

Available online at www.sciencedirect.com

Materials Research Bulletin 42 (2007) 165-170

Materials Research Bulletin

www.elsevier.com/locate/matresbu

Synthesis and characterization of a new layered magnesium zinc phosphate hydrate

Azzedine Bensalem^{a,*}, Vincent Garcia^b, Mahieddine Yahiouche^c

^a Chemistry Department, Long Island University, 1 University Plaza, Brooklyn, NY 11201, USA ^b Ecole Polytechnique de Nantes, 2 rue de la Chantrerie, Nantes Cedex 03, France ^c Universite Mentourie, Constantine 25000, Algeria

Received 28 February 2006; received in revised form 13 April 2006; accepted 28 April 2006 Available online 22 May 2006

Abstract

A new layered magnesium zinc phosphate hydrate, MgZn(HPO₄)₂·H₂O, with a zinc phosphate framework isostructural with the one of Na₂Zn(HPO₄)₂·4H₂O, was prepared by the direct ambient pressure and temperature reaction between zinc 2,4-pentanedionate, phosphoric acid and hexahydrated magnesium chloride. The as-prepared sample is monoclinic (a = 8.780(7) Å, b = 13.240(7) Å, c = 11.123(0) Å and $\beta = 116.21(2)^{\circ}$). The prepared solid undergoes two thermal transformations when it is heated from 110 to 600 °C. The first transformation is due to the release of intercalated water molecules and the second one is due to the HPO₄²⁻ \rightarrow P₂O₇⁴⁻ transition.

© 2006 Elsevier Ltd. All rights reserved.

Keywords: A. Inorganic compounds; A. Layered compounds; B. Chemical synthesis; C. Differential scanning calorimetry; C. X-ray diffraction

1. Introduction

Layered acid phosphates are of continuing academic and industrial interest because of their extensive use as heterogeneous catalysts [1–3]. Some of them can undergo ion exchange and reversible hydration in the same way as zeolites. In the past few years, we developed a new room temperature synthetic route for the preparation of layered acid phosphates of magnesium. The interlayer species were water [4,5], ethanol and ethylene glycol [6]. The water-intercalated magnesium phosphate can undergo reversible dehydration–rehydration provided it is not heated beyond 200 $^{\circ}$ C. There is a growing interest in the preparation of new non-aluminosilicate framework materials with structures that include very large pores. Indeed, some of the zinc phosphate structures exhibit channels with diameters exceeding 14 Å [7–9].

Recently, we reported the synthesis and characterization of a new layered zincophosphate material isostructural with $Na_2Zn(HPO_4)_2 \cdot 4H_2O$ [10]. These materials exhibit a two-dimensional structure containing a network of layers of bifurcated tetrahedral 12-rings connected by sodium cations and H-bonds [11]. This paper reports the synthesis and characterization of MgZn(HPO_4)_2 \cdot H_2O a new member of this family, using a simple ambient conditions synthetic method. The prepared solid was characterized by X-ray powder diffraction and IR spectroscopy. The thermal

^{*} Corresponding author. Tel.: +1 718 488 1461; fax: +1 718 488 1465. *E-mail address:* bensalem@liu.edu (A. Bensalem).

^{0025-5408/\$ –} see front matter \odot 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.materresbull.2006.04.039

transformations were investigated by thermogravimetric (TG), differential thermal (DT) measurements and X-ray powder diffraction.

2. Experimental

The compound was prepared by mixing in distilled water zinc 2,4-pentanedionate $Zn(C_5H_7O_2)_2 \cdot H_2O$ (Johnson Matthey Electronics) with phosphoric acid (99.999%, 85 wt.%, Aldrich Chemical Co.) and hexahydrated magnesium chloride (Aldrich Chemical Co.) in a ratio of $Zn(C_5H_7O_2)_2 \cdot H_2O:2H_3PO_4:MgCl_2 \cdot 6H_2O$. Then with rapid stirring, the formation of a white gelatinous precipitate was initiated by raising the pH to 6.0 using potassium hydroxide (Aldrich Chemical Co.). This precipitate was recovered by filtration and dried at 110 °C for 2 h. The dry white powder was analyzed by:

- X-ray powder diffraction (XRD) using a SCINTAG automated PAD-X diffractometer utilizing monochromatic Cu K α radiation. The diffraction patterns were taken in the range of 5° < 2 θ < 70°. The 2 θ step size was 0.04° and the count time was 1 s. Quartz was used as an internal standard. Cell parameters were obtained from a least square

Table 1X-ray powder data of the as-prepared sample

h k l	$d_{\rm obs}$ (Å)	d_{calc} (Å)	Δd (Å)	<i>I</i> / <i>I</i> ₀ (%)
11-2	5.02366	5.03088	-0.00722	23
111	4.79716	4.81705	-0.01989	20
20-1	4.38381	4.38435	-0.00054	19
022	3.96999	3.98465	-0.01466	11
210	3.80488	3.77538	0.02950	14
10-3	3.71706	3.70681	0.01025	13
102	3.58712	3.56340	0.02372	11
112	3.44505	3.44097	0.00408	24
131	3.36322	3.35714	0.00608	26
1 2 2	3.14047	3.13775	0.00272	43
31-2	2.83902	2.84587	-0.00685	100
1 4 1	2.80822	2.78795	0.02027	10
042	2.77094	2.75837	0.01257	21
32-1	2.63860	2.63368	0.00492	21
113	2.61575	2.61799	-0.00224	12
202	2.60098	2.58571	0.01527	22
240	2.52685	2.53414	-0.00729	18
004	2.50615	2.49481	0.01134	25
330	2.26089	2.25671	0.00418	16
15-3	2.14746	2.15476	-0.00730	19
152	2.13390	2.12548	0.00842	18
302	1.99603	1.98964	0.00639	19
410	1.94110	1.94801	-0.00691	18
3 3 2	1.81762	1.81385	0.00377	21
421	1.72632	1.72613	0.00019	11
313	1.69321	1.70938	-0.01617	21
45-2	1.68630	1.68865	-0.00235	12
3 2 3	1.66930	1.66819	0.00111	12
45-1	1.66261	1.65405	0.00856	14
352	1.59084	1.59069	0.00015	11
422	1.56234	1.56042	0.00192	22
3 4 3	1.52354	1.52892	-0.00538	18
	As-prepared sample			Na ₂ Zn(HPO ₄) ₂ ·4H ₂ O
a (Å)		8.780(7)		8.947(2)
b (Å)	13.240(7)			13.254(2)
<i>c</i> (Å)	11.123(0) 10.0			10.098(2)
β (°)	116.21(2)			116.35(8)

Download English Version:

https://daneshyari.com/en/article/1492650

Download Persian Version:

https://daneshyari.com/article/1492650

Daneshyari.com