ELSEVIER

Contents lists available at SciVerse ScienceDirect

Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/cej

Chemical Engineering Journal

Direct synthesis of spherical YAG:Ce phosphor from precursor solution containing polymer and urea

Takashi Ogi ^{a,*}, Asep Bayu Dani Nandiyanto ^a, Wei-Ning Wang ^b, Ferry Iskandar ^c, Kikuo Okuyama ^a

- ^a Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
- b Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA

HIGHLIGHTS

- ➤ This is the first repot on the direct synthesis of a spherical YAG:Ce phosphor.
- ➤ The spherical phosphor were prepared by a sol-gel method using PEG and urea.
- ➤ The mechanism of the particle formation are proposed based on experimental results.
- ► PEG caused micelle formation and urea acted as an agglomeration promoter.
- The presented method is a direct preparation and produces large amounts of product.

ARTICLE INFO

Article history:
Received 1 June 2012
Received in revised form 28 August 2012
Accepted 4 September 2012
Available online 21 September 2012

Keywords: Phosphor Yttrium aluminum garnet Spherical particle Photoluminescence Sol-gel Micelle

GRAPHICAL ABSTRACT

ABSTRACT

In this study, spherical cerium-doped yttrium aluminum garnet (YAG:Ce) phosphor particles were directly synthesized by a modified sol–gel method using poly(ethylene glycol) (PEG) and urea. In the absence of PEG and urea, only irregularly shaped particles were obtained through aggregation and sintering after solvent evaporation. In contrast, adding both PEG and urea to the precursor solution resulted in the formation of spherical particles. The spherical morphology was attributed to micellization by PEG and micelle agglomeration by urea in a liquid phase. Scanning electron microscopy and X-ray diffraction analyses revealed that the spherical particles were of size around 5 μ m, and the obtained crystal was pure a YAG phase. The emission band of the YAG:Ce phosphor prepared at 1600 °C for 2 h was observed at 530 nm under excitation at 470 nm, and the maximum internal quantum efficiency was found to be 57.6%.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Cerium- or rare-earth-doped yttrium aluminum garnet (YAG:Ce/RE) is a well-known phosphor material used in white-light-emitting diodes because of its relatively high absorption efficiency of blue excitation radiation, high quantum efficiency, and good stability in

high-temperature and high-humidity environments [1,2]. In the preparation of YAG:Ce phosphor particles, the formation of spherical particles is very important for high brightness and high resolution because these particles have lower scattering of evolved light and higher packing densities than those of irregularly shaped particles prepared by conventional solid-state reaction methods [1,3].

According to previous research, spherical YAG:Ce phosphor particles can be synthesized using spray [2,4–6] and solvothermal methods [7,8]. The particles prepared by spraying are generally spherical and rel-

^c Department of Physics, Institute Technology Bandung, Bandung 40132, Indonesia

^{*} Corresponding author. Tel.: +81 82 424 7850; fax: +81 82 424 5494. E-mail address: ogit@hiroshima-u.ac.jp (T. Ogi).

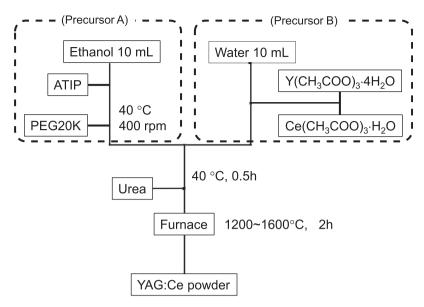
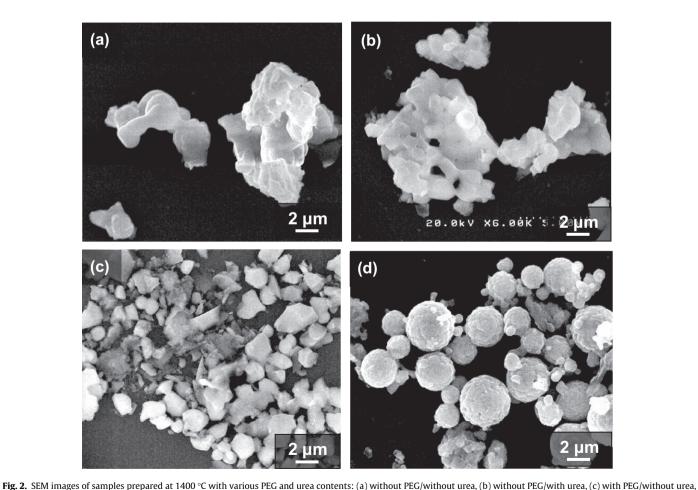



Fig. 1. Flow diagram for the synthesis of spherical YAG:Ce phosphor particles.

and (d) with PEG/with urea.

atively uniform in size and composition. However, the production rate for this process is relatively low and reheating treatment is sometimes needed to obtain a pure YAG structure [4,6,9,10]. In solvothermal synthesis, high pressures (40–100 MPa) are essential for forming a single-phase YAG [8]. From the industrial point of view, preparation processes

under atmospheric conditions are preferable. Large-scale, one-step synthesis of spherical YAG:Ce phosphor particles is an area of ongoing research.

Sol-gel processes have the potential to avoid the above-mentioned problems; they provide a direct method of synthesizing

Download English Version:

https://daneshyari.com/en/article/149389

Download Persian Version:

https://daneshyari.com/article/149389

Daneshyari.com