Optical Materials 42 (2015) 204-209

Contents lists available at ScienceDirect

Optical Materials

journal homepage: www.elsevier.com/locate/optmat

Concentration quenching, surface and spectral analyses of SrF₂:Pr³⁺ prepared by different synthesis techniques

M.Y.A. Yagoub, H.C. Swart, E. Coetsee*

Department of Physics, University of the Free State, PO Box 339, Bloemfontein ZA9300, South Africa

A R T I C L E I N F O

Article history: Received 4 September 2014 Received in revised form 10 January 2015 Accepted 12 January 2015 Available online 7 February 2015

Keywords: SrF₂:Pr³⁺ Concentration quenching XPS PL

ABSTRACT

 Pr^{3+} doped strontium fluoride (SrF₂) was prepared by hydrothermal and combustion methods. The phosphors were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and Photoluminescence (PL) spectroscopy. XRD patterns indicated that the samples were completely crystallized with a pure face-centred cubic (space group: Fm3m) structure. SEM images showed different morphologies which is an indication that the morphology of the SrF₂:Pr³⁺ phosphor strongly depends on the synthesis procedure. Both the SrF₂:Pr³⁺ samples exhibit blue-red emission centred at 488 nm under a 439 nm excitation wavelength (λ_{exc}) at room temperature. The emission intensity of Pr³⁺ was also found to be dependent on the synthesis procedure. The blue-red emission has decreased with an increase in the Pr³⁺ concentration. The optimum Pr³⁺ doping level for maximum emission intensity was 0.4 and 0.2 mol% for the hydrothermal and combustion samples, respectively. The reduction in the intensity for higher concentrations was found to be due to dipole-dipole interaction induced concentration quenching effects.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

 Pr^{3*} is an interesting ion because it has multiple transitions that allows for detailed studies of both radiative and non-radiative mechanisms. Pr^{3*} doped materials have been extensively investigated due to its potential use in a variety of applications [1–5]. For phosphor applications, the 4f–4f transitions are the most relevant, especially the ${}^{1}D_{2} \rightarrow {}^{3}H_{4}$ red emission from Pr^{3*} doped oxide materials [6,7]. Recently, the Pr^{3*} ion was found to be a promising co-doped ion in the lanthanide-based luminescent materials to be used for quantum cutting with the Yb ion, which can be used to enhance the solar cell efficiency [1,8]. Quantum cutting with Pr^{3*} requires a host material with a lower vibrational energy. Strontium fluoride (SrF₂) has very small cut-off phonon energy (~350 cm⁻¹) and was found to be a good host for the quantum cutting application [1,8].

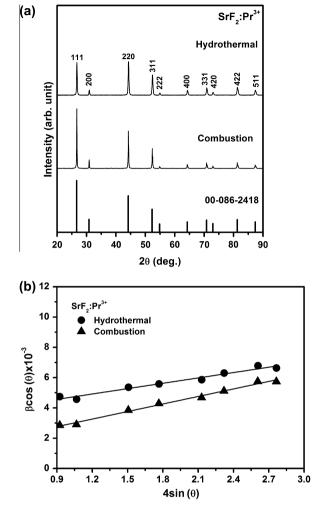
The SrF₂:Pr³⁺ system has been investigated by several researchers [5,9,10] and the majority reported the photon emission cascade and energy transfer mechanism in SrF₂ doped with Pr³⁺ ions (with the main focus on the 4fⁿ-4fⁿ⁻¹5d emission). The 4f-4f transitions have also been studied, but most of these results have been devoted to the red emission from Pr³⁺ doped oxide materials [6,7,11]. On

* Corresponding author. *E-mail address:* Coetseee@ufs.ac.za (E. Coetsee). the other hand, it has been shown that the probability of the multi-phonon relaxation between ${}^{3}P_{0}$ and ${}^{1}D_{2}$ levels of $Pr^{3^{+}}$ significantly decreases as the phonon energy of the host decreased [12]. It has also been observed that the emission intensity of the ${}^{3}P_{0}$ state of the $Pr^{3^{+}}$ doped host with a small phonon energy decreased with increasing the $Pr^{3^{+}}$ concentration. This was attributed to cross-relaxation processes [12–15]. This behavior normally occurs at the smaller average interionic distances between the $Pr^{3^{+}}$ ions.

Most investigations on the concentration quenching of Pr³⁺ doped crystals have been studied in oxide hosts. The different pathways by which cross-relaxation can take place makes Pr³⁺ a challenging ion to study. The low phonon energy of the SrF₂ host may play a key role on the optical properties of the dopant ion. Furthermore, the emission intensities of lanthanide ions in a host were found to be strongly dependent on the condition of the synthesis procedure [8]. This was observed on Pr³⁺ co-doped Yb³⁺ in SrF₂ where the concentration quenching of both ions at small concentrations reduced the near infrared emission intensity and prevented more quantitative assessment of the quantum cutting efficiency. The SrF₂:Pr, Yb quantum cutting samples were synthesised by solid state reaction [8]. It is therefore quite meaningful to study the effect of different synthesis techniques on the concentration quenching of Pr^{3+} in SrF_2 phosphor. In this paper, the surface and spectral investigation of Pr³⁺ doped SrF₂ phosphor powders prepared by using both the hydrothermal and combustion methods

are studied. The concentration quenching of Pr³⁺ for both methods was investigated.

2. Experimental


Cubic SrF₂ nanocrystals doped with Pr^{3+} were prepared using hydrothermal and combustion synthesis procedures, as previously described [16,17]. For the hydrothermal synthesis, analytical grade of Sr(NO₃)₂, Pr(NO₃)₃·6H₂O, NH₄F, sodium oleate, oleic acid and ethanol were used without further purification. For a typical synthesis of SrF₂:Pr³⁺, ethanol, sodium oleate and oleic acid were added simultaneously to an aqueous solution containing Sr(NO₃)₂, NH₄F and Pr(NO₃)₃·6H₂O. After 10 min of stirring the milky colloidal solution was transferred to a 125 ml autoclave lined with Teflon and heated at 180 °C for 24 h. The product was collected by centrifugal and washed with water and ethanol. Finally, the product was dried for 24 h in an oven at 80 °C. The as-prepared SrF₂:Pr³⁺ samples did not emit, therefore, they were sintered for 2 h at 450 °C.

In the combustion synthesis, an aqueous solution of NH₄F was added drop wise to a mixture of Sr(NO₃)₂, Pr(NO₃)₃·6H₂O and urea, which was used as fuel. The milky solution was collected after thoroughly stirring. Then, the obtained solution was transferred into a porcelain crucible and placed in a furnace at 500 °C until the ignition occurred. Finally, the as-prepared powder was sintered for 2 h at 700 °C.

The phosphors were characterized by X-ray diffraction (XRD) (Bruker Advance D8 diffractometer with Cu Ka radiation $(\lambda = 0.154 \text{ nm}))$ to identify the crystalline structure of the powder. Photoluminescence (PL) and photoluminescence excitation (PLE) spectra were collected using a Cary Eclipse fluorescence spectrophotometer and Horiba scientific (Fluorolog-3) spectrofluorometer equipped with a xenon lamp. The surface morphology was recorded using a Shimadzu Supers-can scanning electron microscope (SEM) model ZU SSX-550. High resolution X-ray photoelectron spectroscopy (XPS) was obtained with a PHI 5000 Versaprobe system. A low energy Ar⁺ ion gun and low energy neutralizer electron gun were used to minimize charging on the surface. A 100 µm diameter monochromatic Al Ka X-ray beam (hv = 1486.6 eV) generated by a 25 W, 15 kV electron beam was used to analyze the different binding energy peaks. The pass energy was set to 11 eV giving an analyzer resolution ≤ 0.5 eV. Multipack version 8.2 software was utilized to analyze the spectra to identify the chemical compounds and their electronic states using Gaussian-Lorentz fits. All measurements were performed at room temperature.

3. Results and discussion

Fig. 1(a) depicts the XRD patterns of SrF₂:Pr³⁺ prepared by the hydrothermal and combustion method as well as the standard data for SrF₂ (card No. 00-086-2418). The strong diffraction peaks indicate that the samples powder is fully crystallized (face-centred cubic with space group: Fm3m). The patterns for doped samples with Pr^{3+} are similar to those from the pure SrF_2 matrix. This indicates that there is no obvious influence of the dopants on the crystalline structure of the host. It can, however, be noticed that doping of Pr³⁺ in both methods causes a slight shift to a higher angle with comparison to the standard data (Fig. 1(a)). This can be attributed to the radius difference between Pr^{3+} (0.099 nm) and Sr²⁺ (0.126 nm) ions, which confirms that Pr³⁺ ions are incorporated into the SrF₂ lattice. The sintering temperature of the as-prepared hydrothermal samples caused a slight variation in the XRD intensities. The reason might be that, the orientation growth of the particles occurred in certain directions. The calculated SrF_2 lattice parameter is (5.778 ± 0.0025) Å and

Fig. 1. (a) XRD patterns of $SrF_2:Pr^{3+}$ phosphors; (b) Williamson-Hall plots for Pr^{3+} doped SrF_2 samples for both the hydrothermal and combustion methods.

 (5.775 ± 0.0054) Å for the samples prepared by the combustion and hydrothermal methods, respectively. These results agreed well with reported values [17].

Fig. 1(b) shows Williamson-Hall plots for the combustion and hydrothermal samples, where the peak broadening is dependent on both crystallite size and microstrain. The Williamson-Hall equation is given by $\beta \cos \theta = K\lambda/\mathbf{S} + 4\varepsilon \sin \theta$, where λ is the wavelength of the X-rays (0.154 nm) and β is the full-width at half maximum of the X-ray peak at the Bragg angle θ , K is a shape factor taken as 0.9, **S** is the crystallite size and ε is the microstrain [18]. The slope of this equation is equal to the microstrain and the crystallite size can be calculated from the intercept ($K\lambda/S$). The microstrain of both the hydrothermal and combustion samples has values approximately of 0.0012 (0.12%) and 0.0017 (0.17%), respectively, showing only very small amount of microstrain in this produced materials. The bigger strain was produced by combustion synthesis, which might be true as the combustion technique requires a higher temperature. The estimated average crystallite size (**S**) of the particles was calculated from both the slope of the William-Hall equation and from the well-known Debye-Scherrer's equation [19]. These are tabulated in Table 1. This shows that the hydrothermal method produces a smaller particle size.

SEM images were obtained in order to investigate the surface morphology of the synthesized phosphors. Fig. 2 represents the SEM images that were taken from the powders that were prepared by the different synthesis methods ((a) combustion and (b) Download English Version:

https://daneshyari.com/en/article/1493934

Download Persian Version:

https://daneshyari.com/article/1493934

Daneshyari.com