Optical Materials 36 (2014) 1506-1510

Contents lists available at ScienceDirect

Optical Materials

journal homepage: www.elsevier.com/locate/optmat

Density functional theory calculations of structural, electronic and optical properties of LaPO₄:Eu

^a College of Chemistry and Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, People's Republic of China ^b Institute of Material Science and Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, People's Republic of China ^c Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, People's Republic of China

ARTICLE INFO

Article history: Received 12 November 2013 Received in revised form 30 March 2014 Accepted 9 April 2014 Available online 5 May 2014

Keywords: CASTEP Eu doped LaPO₄ Luminescence Optical transition

ABSTRACT

Monoclinic LaPO₄ and LaPO₄:Eu have been prepared by the hydrothermal method. The phase composition, UV–Vis absorption spectrum, excitation and emission spectra of as-obtained products were measured. Theoretical calculations of the structural, electronic and optical properties of LaPO₄ and LaPO₄:Eu were also carried out. The results indicated that the lattice parameters, energy gap and optical properties were in good agreement with the experimental results. The impurity energy levels induced by the 4f states of Eu expanded the absorption edge and decreased the band gap. The charge transfer energy of O(2p)–Eu(4f) calculated was about 4.41 eV, which was close to the value achieved in excitation spectrum (4.5 eV).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

As functional inorganic materials, lanthanide orthophosphates are widely applied to fluorescent lamp, biomedicine, catalysts and proton conductors [1-4]. Recent years, considerable attention has been paid to its synthesis methods, raw material selection and photoluminescence property [5-8]. However, there are still some challenges such as the energy transfer, the occupation of doping ions and the luminescence mechanism.

Nowadays, theoretical calculations have become a useful method to study electronic structure [9], spectral properties [10], crystallographic evolution [11], reaction mechanism [12] and morphology [13]. Also, the calculated results require experimental data to confirm or revise.

In this paper, we present a work based on the experimental and theoretical study on LaPO₄:Eu. We prepared the LaPO₄ and LaPO₄:Eu powder under the hydrothermal conditions. The products are characterized by the X-rays diffraction microscopy (XRD), photoluminescence spectroscopy (PL) and ultraviolet visible absorption analysis (UV–Vis). The structural, electronic and optical properties of LaPO₄ and LaPO₄:Eu are calculated. The comparison between the experimental and calculated results is also been discussed.

2. Experimental section

2.1. Material preparation

The monoclinic LaPO₄:Eu were prepared by the hydrothermal method with lanthanum nitrate (La(NO₃)₃;99.99%), europium oxide (Eu₂O₃;99.99%), diammonium phosphate ((NH₄)₂HPO₄;99.99%) and nitric acid (HNO₃;68%) as starting materials. Firstly, 1.25×10^{-2} mmol Eu₂O₃ were dissolved into 68% HNO₃. 4.75 mmol La(NO₃)₃ and 5 mmol (NH₄)₂HPO₄ were dissolved in 30 ml deionized water, respectively, and then mixed together by dropwise. The obtained suspension was adjusted to pH = 9–10 by adding HNO₃ solution and poured into the Teflon-lined autoclave. The Teflon-lined autoclave was sealed and heated at 180 °C for 12 h. The product was washed by deionized water for several times and dried in vacuum oven at 80 °C. Pure LaPO₄ was prepared in the same way without adding Eu₂O₃.

2.2. Characterization

The phase compositions were identified by the X-ray diffraction method (XRD, Model D8 Advance, BRUKER/AXS). The excitation and emission spectra were obtained by Fluorolog-3P photoluminescence spectroscopy (Jobin Yvon Inc.). The absorption spectrum of the sample was measured by Hitachi U-4100 UV–VIS–NIR spectrophotometer.

^{*} Corresponding author. Tel.: +86 53266781321. E-mail address: wangxin.hd@163.com (X. Wang).

2.3. Computation method

Calculations of the structural, electronic and optical properties of LaPO₄ and LaPO₄:Eu were performed by the CASTEP module of the Materials Studio package. Exchange and correlation effects were treated within the Perdew–Burke–Ernzerhof (PBE) function of the generalized gradient approximation (GGA). The plane-wave cutoff energy was set at 340 eV; the Monkhors-Pack scheme k-points grid sampling for the Brillouin zone was performed with a $3 \times 3 \times 5$ mesh; norm-conserving pseudopotentials were carried out for all chemical elements; BFGS algorithm was chosen. The convergence parameters were as follows: total energy tolerance -1×10^{-5} eV/atom, maximum force tolerance 0.01 eV/Å, maximal stress 0.02GPa and maximal displacement 5×10^{-4} Å, SCF tolerance 2×10^{-6} eV/atom [14]. The electron–ion interaction (2s²2p⁴ for O and 3s²3p³ for P, 5d¹6s² for La and 4f⁷5s²5p⁶6s² for Eu) were described.

3. Results and discussion

3.1. Structure, absorption and luminescence spectra

The XRD patterns of LaPO₄, LaPO₄:Eu and the standard data for the monoclinic LaPO₄ is shown in Fig. 1. According to the diffraction peaks, two samples measured can be readily indexed to the monoclinic monazite-type phase of LaPO₄ with the lattice parameters of *a* = 6.84, *b* = 7.07, *c* = 6.45 Å and β = 103.85°. No additional peaks can be noted due to the Eu doping, indicating that Eu ions might have been uniformly diffused into the LaPO₄ lattice. However, the diffraction peaks at 2θ = 26.914° and 31.206° of LaPO₄:Eu show a little shift toward the lager angle in comparing with those of pure LaPO₄, which might result from the size of the Eu³⁺ (1.12 Å) is smaller than La³⁺ (1.216 Å) in the ninefold coordination of monoclinic structure [15].

The excitation and emission spectrum of LaPO₄:Eu is presented in Fig. 2. In the excitation spectrum, a wide band with the maximum value of around 275 nm is associated with the charge transfer transition from O (2p) to Eu (4f), while the other narrow peaks originate from Eu 4f–f direct excitation. In the emission spectrum, ${}^{5}D_{0}{}^{-7}F_{J}$ (J = 0, 1, 2, 3, 4) transition of LaPO₄:Eu is observed. According to the Judd–Ofelt theory, magnetic dipole transition (${}^{5}D_{0}{}^{-7}F_{1}$) is permitted; electric dipole transition (${}^{5}D_{0}{}^{-7}F_{2}$) is allowed only when Eu³⁺ occupied the site without an inversion center. Meanwhile, the intensity of ${}^{5}D_{0}{}^{-7}F_{1}$ transition is not the strongest. All these results indicate that Eu ion does not take the place of the inversion center in as-prepared LaPO₄:Eu in this work [16].

Fig. 3 illustrates the UV–Vis absorption spectra of LaPO₄ and LaPO₄:Eu. It shows two samples have close absorption region in the range from near ultraviolet to visible light due to the few quantities of Eu doping. According to the Kubelka–Munk function, the

Fig. 1. XRD patterns of LaPO4 and LaPO4:Eu and standard pattern.

Fig. 2. Luminescence excitation spectrum and emission spectrum.

Fig. 3. UV-Vis diffused reflectance spectra of LaPO4 and LaPO4:Eu.

Fig. 4. UV-Vis absorption-energy curves of LaPO4 and LaPO4:Eu.

Download English Version:

https://daneshyari.com/en/article/1494064

Download Persian Version:

https://daneshyari.com/article/1494064

Daneshyari.com