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a b s t r a c t

The relationships of the wavelength dependence of both the electro-optic and second harmonic genera-
tion coefficients are established within the same model applied to nonlinear optical materials. It is dem-
onstrated that the dispersion of these coefficients can be obtained from the own dependence of the
refractive indices only, without any fitted parameter. Solely the measurement of the coefficient at one
wavelength is required within this approach. A very good agreement in the k-dependence of electrooptic
and second harmonic generation coefficients is achieved between calculated values and experimental
data in SBN, DAST, KTP and KNbO3 crystals.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

It is of a prime importance to get the knowledge of the k-
dependence of the nonlinear susceptibility vð2Þ tensor coefficients
to find the best conditions to use nonlinear optical (NLO) materials
in devices, or to optimize the properties of a material. Unfortu-
nately the Pockels electrooptic (EO) and second harmonic genera-
tion (SHG) coefficients are generally measured at one or two
particular wavelengths only. The measurements are time consum-
ing and require special preparation of the crystals, such as cutting
for a particular shape and face polishing. Therefore the prediction
of the values via models is needed. The calculation of the second-
order susceptibility (SOS) has been the object of many studies since
several decades. After the earlier work of Bloembergen [1] who for-
mulates at first the development of the NLO polarization, Kurtz and
Robinson [2] or Garrett and Robinson [3] (see also the textbook of
Boyd [4]) have expressed different formulae of the EO and SHG
coefficients. At that time, experimental data in NLO materials were
relatively rare and numerous results are available since 15 years
only. Surprisingly, just a few studies were so far concerned by
the comparison of the predicted values of NLO coefficients with
the experimental data. Seres [5] reported a model of the wave-
length dependence of the SHG coefficients and his calculations
were compared with data in KTiOPO4 (KTP) and LiNbO3 (LN).

Furthermore, Wang [6] derived, from a model of the quadratic
NLO susceptibility, the values of Pockels EO and SHG coefficients
along c-axis in many ferroelectric materials. The results were in
agreement within a factor 2 with experimental data. These both
models therefore do not afford a completely suitable description
of the k-dependence of vð2Þ coefficients. In addition second-order
susceptibilities have been computed within the framework of den-
sity functional theory. These calculations provided electronic band
structure and optical properties which match the experimental
data, in particular in borate crystals such as lanthanum calcium bo-
rate [7]. However EO coefficients are not given within this ap-
proach. Here we propose a way to calculate in any NLO crystal
the dispersion of both EO and SHG coefficients from the k-depen-
dence of the refractive indices only. For this, by contrast with the
studies of Seres [5] and Wang [6], we start from a formulation close
to this used in pioneer works [1–3]. Thus, from an anharmonic-
oscillator model we can derive the SOS and thus both the SHG
and EO coefficients. For this, we successively consider the SOS in
which, either the frequency of both interacting fields are identical
(x) and in the optical range (case of the SHG), and then one fre-
quency (X) of one field is much smaller than the optical field fre-
quency (x) (case of the EO process). We demonstrate that the
wavelength dependence of these coefficients depends only on the
dispersion of the linear refractive indices. We show that solely
one adjustable parameter is required to obtain the behavior of
the EO and SHG coefficients as a function of the laser wavelength,
or as well as the temperature dependence of the EO coefficient. The
validity of our approach is shown by the good agreement which is
achieved between our calculations and experimental data, in dif-
ferent NLO crystals.
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2. Model

2.1. Model description

In the general formulation of second-order NLO process the
mixing between two monochromatic waves with angular frequen-
cies x1 and x2 both in optical range are considered and the in-
duced polarization Pð2ÞðtÞ as due to the second order
susceptibility results [4] from the superposition of signals oscillat-
ing at frequency 0, 2x1, 2x2;x1 þx2, and x1 �x2. Within the
microscopic mechanism generally used, the material is assumed
to consist into independent electronic oscillators and the NLO
polarization arises from an anharmonic cubic potential [2,8].
Therefore this model yields the description of the NLO response,
and thus, the electronic (or direct) EO coefficients in terms of elec-
tronic distortion only. Here we aim to report on a model which
should be able to provide the dispersive behavior of EO and SHG
coefficients as well. As a consequence we afford two changes to
the general formalism. First we consider the EO Pockels effect as
a peculiar NL process where the frequencies are very different
(x2 � x1) by contrast of the SHG effect, which is widely reported
in the literature, for which the frequencies are equal x1 ¼ x2. It is
worth to note that whereas in the SHG process the sole contribu-
tion is electronic, in the EO effect, in addition to the direct elec-
tronic contribution, another contribution arises from indirect
modulation by the external electric field of the outer electrons
via the lattice vibration and mechanical deformation [8,9]. There-
fore we extend the anharmonic model to take into account of the
electron-ion interaction. It is the second change we made with re-
spect to the general formalism. The potential of the electron is thus
rewritten under the form

VðxÞ ¼ mx2
0

2
x2 þ B

3
x3 þ C

2
x2X ð1Þ

where x0 is the main electronic resonance frequency, m and x are
respectively the mass and displacement of electron, and X is the
ion displacement. B and C are constants for a material. The first
and the second terms are the harmonic and anharmonic contribu-
tions of the electronic motion whereas the third term arises from
the interaction of the electron with the ionic core. Thus the indirect
EO contribution arising from the modulation via the ionic lattice can
be considered by this last term. This means that we can express the
EO coefficients at any frequency of the modulated applied field. As
reflected by Eq. (1), it is assumed, as usually, that the linear suscep-
tibility or the refractive index has a main contribution arising from
one single oscillator with an angular frequency x0 lying in the vis-
ible (blue–green) or UV range. In a lossless material the SOS is gen-
erally assumed to be independent of the frequencies of the electric
fields, so that the permutation can be done on the indices i, j, k
denoting the field components. This is known as the Kleinman sym-
metry condition, leading to the contracted notation used in the
description of the symmetry properties of the SOS. This assumption
is not taken within our study since essentially the dispersion of the
SOS is aimed, and our formulation explicitly separates the indices i, j
and k. Consistently, we do not suppose that refractive indices have
the same resonances along the principal axes. In our re-formulation
of the dispersion of second-order coefficients we specify as ex-
plained above, the subscripts i, j and k and we stress the quantities
which are depending on the frequency. At last, we do not consider
here any local field correction which is generally needed to insure
the link between microscopic and macroscopic formulations. This
effect is not included in our equations since we are interested to
the calculation of macroscopic linear and nonlinear susceptibilities,
and their comparison with experimental values. Now we will derive
expressions of the SOS susceptibility, and the EO Pockels and SHG
coefficients as well.

2.2. Expression of the SHG coefficients

At first is expressed the dispersion of the SHG coefficients. In
this case, only the two first terms of the potential in Eq. (1) are con-
sidered. From the polarization term at frequency 2x the second or-
der susceptibility and the SHG coefficients d, can be derived as

vSHG
ijk ð2x;x;xÞ ¼ B

ðx2
0 � ð2xÞ2Þi

vjðxÞvkðxÞ ð2Þ

or

vSHG
ijk ð2x;x;xÞ ¼ B

ðn2
j ðxÞ � 1Þðn2

kðxÞ � 1Þ
ðx2

0 � ð2xÞ2Þi
ð3Þ

where n is the refractive index and v the linear susceptibility, and

dijkðxÞ ¼
1
2
vSHG

ijk ð2x;x;xÞ ð4Þ

Since B is a material constant, Eq. (3) shows that the frequency
dependence of the SHG coefficients depends on the dispersion of
the linear refractive indices only. We can underline that this factor
B introduced in the potential (electronic anharmonic coefficient)
corresponds in fact to the well known Miller constant D [2–4] de-
fined as

vSHG
ijk ð2x;x;xÞ ¼ Dijkð2x;x;xÞvið2xÞvjðxÞvkðxÞ ð5Þ

It is observed in Eq. (3) that the index i plays a different role from
indices j and k. As x2

0 � ð2xÞ2i
� ��1

differs from n2
i ðxÞ � 1, Eq. (2)

therefore does not hold with Kleinman symmetry rule. This means
that even if the invariance between the indices j and k holds, the
permutation between (i, j, k) cannot be applied.

2.3. Expression of EO coefficients

To express the EO Pockels effect in terms of second order pro-
cess, a wave with a frequency x2 much smaller than the other
x1 is considered. Then the NLO polarization and therefore the
SOS can be rewritten in terms of the electrical frequency x2 ¼ X
and the optical frequency x1 ¼ x as

vEO
ijk ðx;XÞ ¼

vjðxÞ
ðx2

0 �x2Þi
BvE

k þ CvI
kðXÞ

� �
ð6Þ

where vðxÞ is the linear susceptibility at optical frequency, vE and
vI are respectively the electronic and ionic contributions of the lin-
ear susceptibility (or permittivity), as determined far from elec-
tronic and ionic resonances. As usually considered, the index k
denotes the direction of the external electric field and i and j corre-
spond to the polarization components of the laser field. It is worth
to note that the second factor in Eq. (6) is independent of the optical
frequency x (or laser wavelength).

The EO Pockels coefficient is then derived from the SOS by

rijkðxÞ ¼ 2
vEO

ijk ðx;XÞ
n2

i ðxÞn2
j ðxÞ

: ð7Þ

The EO coefficient thus depends on both frequencies, i.e. the fre-
quency X of the modulating electric field and the optical frequency
x of the laser field. The dependence of the EO coefficient can be de-
rived separately for each frequency from Eqs. (6) and (7). Thus if X
is fixed we get

vEO
ijk ðxÞ ¼

n2
j ðxÞ � 1
ðx2

0 �x2Þi
aEO

X;ijk ð8Þ

where aEO
X;ijk is a parameter independent of x derived from the sec-

ond factor of Eq. (6). Eq. (8) therefore provides the dependence of
the EO coefficients on the optical frequency (or laser wavelength)
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