Optical Materials 36 (2014) 1250-1254

Contents lists available at ScienceDirect

Optical Materials

journal homepage: www.elsevier.com/locate/optmat

Spin-Hamiltonian parameters and local structures of the tetragonal $(CrO_4)^{3-}$ clusters in Cr^{5+} -doped KDP-type crystals

Yang Mei^{a,c}, Ren-Ming Peng^a, Cheng-Fu Wei^a, Wen-Chen Zheng^{b,*}

^a School of Physics & Electronic Engineering, Mianyang Normal University, Mianyang 621000, PR China

^b Department of Material Science, Sichuan University, Chengdu 610064, PR China

^c Research Center of Computational Physics, Mianyang Normal University, Mianyang 621000, PR China

ARTICLE INFO

Article history: Received 29 January 2014 Received in revised form 1 March 2014 Accepted 3 March 2014 Available online 27 March 2014

Keywords: Electron paramagnetic resonance Crystal- and ligand-field theory Dynamic effect Cr⁵⁺ KDP-type crystals

ABSTRACT

The spin-Hamiltonian parameters (g factors $g_{//}, g_{\perp}$ and hyperfine structure constants $A_{//}, A_{\perp}$) of tetragonal $(CrO_4)^{3-}$ clusters in Cr^{5+} -doped KDP-type crystals KH₂PO₄, KD₂PO₄, NH₄H₂PO₄, ND₄D₂PO₄, KH₂AsO₄, KD₂AsO₄ and NH₄AsO₄ are calculated from the high-order perturbation formulas based on the twomechanism model for the elongated d¹ tetrahedral clusters in crystals with the ground state $|d_{x^2-y^2}\rangle$. In the model, the contributions to spin-Hamiltonian parameters from both the crystal field (CF) mechanism and the charge-transfer (CT) mechanism (the latter is neglected in the widely-applied CF theory) are included. On the basis of the calculated values and by taking account of the small admixture of the first excited state $|d_{z^2}\rangle$ to the ground state $|d_{x^2-y^2}\rangle$ due to the vibrational motion of ligands (this dynamic effect leads a twinkling elongated tetrahedren to become a compressed one), all the calculated spin-Hamiltonian parameters by using the conventional static contributions for these Cr^{5+} -doped KDP-type crystals are overcome, and the impurity-induced static local structures of $(CrO_4)^{3-}$ clusters (which are different from the corresponding ones in the host crystals) in KDP-type crystals are estimated. The results are discussed.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

KH₂PO₄ (KDP) is a well-known nonlinear optical (NLO) material and has been applied as laser frequency conversion, harmonic generation for higher pulse, low repetition rate lasers, electro-optical modulation, and Q-switching applications [1–4]. Because of the high laser damage threshold, KDP and deuterated KD₂PO₄ (DKDP) crystals are still the only NLO crystals used to laser radiation conversion in laser fusion systems [1,2]. So, the studies of pure and doped KDP-type crystals are of interest. The electron paramagnetic resonance (EPR) spectra of Cr⁵⁺-doped KDP-type crystals KH₂PO₄, KD₂PO₄, NH₄H₂PO₄, ND₄D₂PO₄, KH₂AsO₄, KD₂AsO₄ and NH₄H₂AsO₄ were measured at room temperature paramagnetic phase of these crystals [5]. These measurements suggested that Cr⁵⁺ ions occupy the tetrahedral P^{5+} or As^{5+} sites to form the tetragonal $(CrO_4)^{3-}$ clusters in the KDP-type crystals, and their spin-Hamiltonian parameters (g factors g_{ll} , g_{\perp} and hyperfine structure constants A_{ll} , A_{\perp}) were reported [5]. There are two unusual points related to

these spin-Hamiltonian parameters: (i) The observed $g_{||} < g_{\perp}$ and $A_{||} > A_{\perp}$ (see Table 1) for all these Cr⁵⁺-doped KDP-type crystals show that the ground state of Cr⁵⁺ ion must be mainly the $|d_{x^2-y^2}\rangle$, corresponding to the (CrO₄)³⁻ tetrahedral clusters being tetragonally-elongated (i.e., $\alpha < \alpha_0$, where α is the angle between the metal-ligand distance *R* and C₄ axis, $\alpha_0 \approx 54.74^\circ$ is the same angle in cubic tetrahedron). However, the $(PO_4)^{3-}$ or $(AsO_4)^{3-}$ clusters replaced by $(CrO_4)^{3-}$ clusters in the host KDP-type crystals are tetragonally-compressed (i.e., $\alpha_h > \alpha_0$ [6–10], see Table 2), suggest-ing that the ground state of Cr⁵⁺ ion is mainly the $|d_{z^2}\rangle$. The difference of tetragonal distortion property (elongation or compression) between the substitutional impurity clusters and the host clusters is due to the impurity-induced local lattice relaxation. In fact, similar difference can be found for other dⁿ impurity clusters in crystals. For example, in Cr^{5+} -doped YMO₄ (M = V, P) crystals, the observed g factors showed that the tetrahedral cluster changes from tetragonal elongation in the host crystal to tetragonal compression in the impurity center [11,12]. (ii) For d¹ tetrahedral clusters with the ground state $|d_{x^2-y^2}\rangle$, from the dominant second-order perturbation formulas in the conventional crystal-field (CF) theory, we have [13]

^{*} Corresponding author. Tel.: +86 28 85412371; fax: +86 28 85416050. *E-mail address:* zhengwc1@163.com (W.-C. Zheng).

Table 1

The spin-Hamiltonian parameters (g factors $g_{//}$, g_{\perp} , and hyperfine structure constants $A_{//}$, A_{\perp} , A_i are in units of 10^{-5} cm⁻¹) for the tetragonal (CrO₄)³⁻ clusters in Cr⁵⁺-doped KDP-type crystals.

	KH ₂ PO ₄	KD ₂ PO ₄	NH ₄ H ₂ PO ₄	ND ₄ D ₂ PO ₄	KH ₂ AsO ₄	KD ₂ AsO ₄	$\rm NH_4H_2AsO_4$
$\Delta g_{//}^{CF}$	-0.1152	-0.1152	-0.1173	-0.1161	-0.1175	-0.1173	-0.1195
$\Delta g_{//}^{CT}$	0.0548	0.0548	0.0540	0.0545	0.0566	0.0567	0.0561
g ^(elong.)	1.9419	1.9419	1.9390	1.9406	1.9414	1.9417	1.9388
$g_{ }$ (Calc.) $g_{ }$ (Expt. [5]) Δg_{\perp}^{CP} Δg_{\perp}^{CT}	1.9560 1.9560(5) -0.0273 0.0107	1.9561 1.9561(5) -0.0273 0.0107 1.9257	1.9560 1.9560(5) -0.0279 0.0105	1.9558 1.9558(5) -0.0275 0.0106 1.0954	1.9559 1.9559(5) -0.0275 0.0110 1.0258	1.9560 1.9560(5) -0.0274 0.0110 1.0260	1.9561 1.9561(5) -0.0280 0.0109 1.0252
$g_{\perp}^{(elong.)}$	1.9857	1.9857	1.9849	1.9854	1.9858	1.9860	1.9852
g_{\perp} (Calc.) g_{\perp} (Expt. [5]) $A^{(1)}$	1.9759 1.9759(5) 365	1.9758 1.9758(5) 361	1.9740 1.9740(5) 370	1.9752 1.9752(5) 360	1.9758 1.9758(5) 375	1.9760(5) 361	1.9740 1.9740(5) 372
A ^{(2)CF}	50	50	52	52	49	49	50
A ^{(2)CT}	-11	-11	-11	-11	-12	-12	-12
A ^(elong.)	404	400	410	400	412	398	411
$A_{//}(Calc.)$ $A_{//}(Expt.[5])$ $A^{(1)}$	273 271(10) 18	269 266(5) 14	259 257(5) 22	264 262(5) 14	276 271(9) 42	268 267(5) 29	257 257(5) 37
A ^{(2)CF}	8	8	9	9	8	8	9
A ^{(2)CT}	-2	-2	-2	-2	-2	-2	-2
A ^(elong.)	24	20	29	20	48	35	44
A⊥(Calc.) A⊥(Expt.[5])	72 93(37)	70 93(37)	82 93(37)	72 93(37)	90 93(37)	80 93(37)	93 93(37)

Table 2

Structural data, group overlap integrals, cubic field parameters, covalence parameters, core polarization constants and admixture angles for the (CrO₄)³⁻ clusters in Cr⁵⁺-doped KDP-type crystals.

	KH ₂ PO ₄	KD ₂ PO ₄	NH ₄ H ₂ PO ₄	ND ₄ D ₂ PO ₄	KH ₂ AsO ₄	KD ₂ AsO ₄	NH4H2AsO4
R_{h} (Å)	1.525 [6]	1.525 [6]	1.539 [7]	1.539 [8]	1.686 [9]	1.686 [9]	1.675 [10]
$R(\dot{A})$	1.613	1.613	1.627	1.627	1.691	1.691	1.680
α_h (deg.)	54.91 [6]	55.23 [6]	55.74 [7]	55.48 [8]	54.93 [9]	54.92 [9]	55.49 [10]
α (deg.)	54.68	54.68	54.70	54.68	54.62	54.61	54.64
$S_{dp}(\sigma)$	-0.1399	-0.1399	-0.1364	-0.1364	-0.1205	-0.1205	-0.1232
$S_{dp}(\pi)$	0.0512	0.0512	0.0491	0.0491	0.0404	0.0404	0.0418
Dq (cm ⁻¹)	1350	1350	1300	1300	1250	1250	1250
f_{γ}	0.532	0.532	0.54	0.535	0.502	0.501	0.51
ĸ	0.33	0.32	0.34	0.32	0.395	0.36	0.38
θ (deg.)	31.5	31.6	33.9	32.4	32.4	31.6	34.2

$$g_{//} \approx g_e - \frac{8k\zeta}{E_1}, \qquad g_\perp \approx g_e - \frac{2k\zeta}{E_2}$$
 (1)

In which $g_e \approx 2.0023$ is the free-electron g value. The CF energy levels [13].

$$E_1 = 10Dq, \qquad E_2 = 10Dq - 3Ds + 5Dt,$$
 (2)

where Dq is the cubic field parameter, and Ds and Dt are the tetragonal field parameters. The difference between E_1 and E_2 is generally small because the tetrahedral distortion of d¹ tetrahedral clusters in crystals is often not too large. Thus, the ratio $\Delta g_{II} \Delta g_{\perp} \approx 4$ (where $\Delta g_i \approx g_i - g_e$, i = || or \perp). However, the observed ratios $\Delta g_{||}/\Delta g_{\perp}$ (\approx 1.6 (2), see Table 1) for Cr⁵⁺-doped KDP-type crystals are much smaller than 4. The large disparity of ratio $\Delta g_{//} \Delta g_{\perp}$ suggests that there may be small admixture of the first excited state $|d_{z^2}\rangle$ to the ground state $|d_{x^2-y^2}\rangle$. However, the investigations of molecular energy scheme showed that the static tetrahedral (D_{2d}) CF cannot give rise to the admixture [11,14]. So, until now no theoretical explanations for these spin-Hamiltonian parameters in Cr⁵⁺-doped KDP-type crystals have been made. It is noted that although the static effect cannot result in the above admixture, a dynamic effect due to the vibrational motion of ligands may lead to the admixture. For instance, for some tetragonally-compressed Cu^{2+} (3d⁹, the complementary ion of 3d¹) octahedral clusters in crystals with the ground state $|d_{z^2}\rangle$, a dynamic effect due to the vibrational motion of ligands (which can lead a twinkling compressed octahedron to become an elongated one) was suggested to explain the observed $g_{|l} > g_e$ (note: from the high-order perturbation formula $g_{/l} \approx g_e - \frac{3\zeta^2(g_e-k)}{E_i^2}$ [12,15], $g_{|l}$ should be smaller slightly than g_e) [15–17]. Specially, in the above $(\text{CrO}_4)^{3-}$ tetrahedral clusters in YMO₄ crystals, the dynamic effect of vibrational motion of ligands leads a twinkling compressed $(\text{CrO}_4)^{3-}$ tetrahedron to be an elongated one [12]. This twinkling elongation can give rise to the small admixture between $|d_{x^2-y^2}\rangle$ and $|d_{z^2}\rangle$ states. Thus, the observed g_i $(i = |l \text{ or } \bot)$ factors are averaged in time for $g_i^{(comp.)}$ (corresponding the ground state $|d_{z^2}\rangle$) and $g_i^{(elong.)}$ (corresponding to the ground state $|d_{z^2}\rangle$), and the large derivations of $g_{l/}$ from g_e for tetragonal $(\text{CrO}_4)^{3-}$ clusters in YMO₄ crystals are explained reasonably [12].

Similarly, in this paper, we study the spin-Hamiltonian parameters of the tetrahedral $(CrO_4)^{3-}$ clusters in Cr^{5+} -doped KDP-type crystals by considering the dynamic effect due to the vibrational motion of ligands. The effect leads a twinkling elongated $(CrO_4)^{3-}$ tetrahedron to be a compressed one. Thus, the ground state is the admixture of the main $|d_{x^2-y^2}\rangle$ state with the $|d_{z^2}\rangle$ state, i.e., [12,16,17]

$$|\phi\rangle = \cos\theta |d_{x^2 - y^2}\rangle + \sin\theta |d_{z^2}\rangle \tag{3}$$

Download English Version:

https://daneshyari.com/en/article/1494342

Download Persian Version:

https://daneshyari.com/article/1494342

Daneshyari.com