Chemical Engineering Journal 207-208 (2012) 521-525

Contents lists available at SciVerse ScienceDirect

Chemical Engineering Journal

Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/cej

Development of pilot WGS/multi-layer membrane for CO₂ capture

See Hoon Lee^a, Jung Nam Kim^b, Won Hyun Eom^b, Shin-Kun Ryi^c, Jong-Soo Park^c, Il Hyun Baek^{b,*}

^a Department of Resources and Energy Engineering, Chonbuk National University, 71-2 Jang-dong, Yuseong-gu, Daejeon 305-343, Republic of Korea
^b High Efficiency and Clean Energy Research Division, Korea Institute of Energy Research, 71-2 Jang-dong, Yuseong-gu, Daejeon 305-343, Republic of Korea
^c Energy Materials and Convergence Research Department, Korea Institute of Energy Research, 71-2 Jang-dong, Yuseong-gu, Daejeon 305-343, Republic of Korea

HIGHLIGHTS

- ► A pilot scale water gas shift with multi-layer Pd–Cu membrane module has been developed.
- ▶ The pressure of the hybrid system enhances hydrogen permeation and results in concentrating CO₂ in retentate flow.
- ▶ The CO₂ concentration of retentate flow reached over 80 vol.% from 5 vol.% of original syngas.
- ▶ We conclude the WGS/membrane hybrid system is a promising way to achieve 90 vol.% of CO₂ in IGCC plants.

ARTICLE INFO

Article history: Available online 17 July 2012

Keywords: Water gas shift (WGS) Membrane CO₂ capture Gasification

ABSTRACT

For pre-combustion CO₂ capture processes, a 1 Nm³/h water gas shift (WGS)/multi-layer membrane system has been developed. Simulated syngas (H₂: 25–35, CO: 60–65, CO₂: 5–15 vol.%) was used in these experiments. The 1 Nm³/h WGS/multi-layer membrane system consisted of mass flow controllers, water gas shift reactors, gas/steam separators, five layer Pd–Cu membrane module, back pressure regulator, gas chromatograph (GC) analyzers and nondispersive infrared (ND-IR) gas analyzers. The operation conditions of WGS/multi-layer membrane system were 200–400 °C, 10–20 bar and steam/carbon ratios in WGS were between 2.0 and 5.0. In the experiments of WGS/multi-layer membrane system, the average gas concentration before membrane module was H₂: 57–58, CO₂: 42–43, CO: 0.2–0.3 vol.%. The CO₂ concentration of retentate flow reached up to 80 vol.% and the H₂ concentration of permeate flow was over 99 vol.%.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

As a need for clean energy usage has increased in the world, integrated gasification combined cycle (IGCC) with pre-combustion CO_2 capture and storage has been developed as a means for maximizing energy efficiency and minimizing climate change. Pre-combustion CO_2 capture, a technology for reducing CO_2 is a highly economical and efficient process that involves the exhausted heat and the use of microequipment in combination with several technologies [1,2]. Also, the demand for hydrogen is expected to grow rapidly in coming years with the uptake of low-emission transport and power generation technologies. Though steam methane reforming to produce syngas accounts for most of the global H₂ production, coal gasification may increasingly replace steam methane reforming to meet the world's growing demand for H₂ with coal's abundance and low-cost [3]. In gasification processes with pre-combustion CO₂ capture coal is converted into environmentally more friendly syngas which is composed of CO, H₂, and CO₂. Especially, the concentration of CO in gasification processes can be in the range of 35–65 vol.%. This is much larger than that is produced in the reforming processes of natural gas, which is about 10 vol.%. In order to capture CO₂ economically in gasification processes, CO in syngas must be converted into CO₂ and H₂ by the water gas shift reaction and then CO₂ must be separated from the H₂ mixture. This approach makes the CO₂ capture process techno-economically viable and maximizes the H₂ yield. Furthermore a novel process such as hydrogen membrane can be conducive to capturing CO₂ and producing efficiently H₂ at relatively lower costs and lower energy consumption than conventional pre-combustion CO₂ capture technologies with absorption units [4,5].

Taking into account the exothermic nature of the WGS reaction, higher CO conversions are favored at lower temperature. But kinetics is almost instantaneous at very high temperatures. Because of the inherent temperature increase during the reaction, synthesis gas generation is typically conducted in adiabatic CO-shift reactors

^{*} Corresponding author. Tel.: +82 42 860 3648; fax: +82 42 860 3641. *E-mail address:* ihbaek@kier.re.kr (I.H. Baek).

^{1385-8947/\$ -} see front matter @ 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.cej.2012.07.013

to avoid catalyst overheating and improve the reaction conversion [6]. Conventional two stage process for WGS is generally carried out in two adiabatic reactors, which are a low temperature shift reactor (LTS: 200–220 °C) and a high temperature shift reactor (HTS: 300–450 °C). The extent of the shift conversion determines the final CO concentration in the fuel gas and thus the maximum level of CO₂ control [7].

The separation of hydrogen from shifted syngas increases the concentration of CO₂ stream and results in CO₂ capture cost in coal gasification processes. Therefore many countries like USA, Canada, Japan and Europe is developing pre-combustion CO₂ capture technologies with WGS. To separate hydrogen and CO₂, some researchers suggested hydrogen membrane which allow for the selective permeation of hydrogen to the permeate side, while the high-pressurized retentate stream consists primarily of CO₂. Thus, subsequent CO₂ compression for transport and storage requires low energy [3,5,6,8–10]. Generally palladium alloys have been studied as hydrogen-separating membranes in applications that include hydrogenation and dehydrogenation reactions, H₂ recovery from plant streams, and coal gasification because of the capability to separate hydrogen from gaseous mixtures and stability of Pd and Pd alloy membrane [11–13]. Many studies for Pd or Pd alloy membranes have focused on reducing the thickness of Pd-based membranes because of its obvious connection with hydrogen permeation flux [5].

In this study, a hybrid system composed of two step water gas shift reactors and a five layer Pd–Cu membrane module were used for generating CO_2 rich stream and hydrogen production. The goal was to study the feasibility of WGS reactors with membrane module for pre-combustion CO_2 capture and prove the possibility of a hybrid system to be applied in coal gasifiers. The gas composition of shifted syngas, permeate flow, retentate flow were analyzed to confirm CO_2 enrichment and the purity of H₂.

2. Experimental

In this work, a pilot scale system has been used to facilitate carbon capture based on pre-combustion technologies shown in Fig. 1. This system consisted of water gas shift reactors and a Pd–Cu membrane module operated in a hybrid mode. In the initial stage, the typical syngas is emulated by adjusting the gas composition-CO, H₂, CO₂, N₂. This was achieved by mass flow controllers (MFCs, Brooks Co, 5850) connected to relevant gas cylinders. To inject high temperature steam to the WGS reactors, a pressurized water tank, liquid flow controller (Bronkhorst co., L3O) and steam generator were used. To mix simulated syngas with steam and heat gas

(a) Schematic diagram of WGS/multi-layer membrane system

(b) Picture of WGS/multi-layer membrane system

Fig. 1. Pilot scale WGS/multi membrane system (a) schematic diagram (b) picture of pilot unit.

Download English Version:

https://daneshyari.com/en/article/149451

Download Persian Version:

https://daneshyari.com/article/149451

Daneshyari.com