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a b s t r a c t

We show that defect modes in optically induced photonic lattices are possible in biased photovoltaic–
photorefractive crystals. These defect modes exist in different bandgaps when the defect strength is chan-
ged. When the defect strength is positive, there is a defect-mode branch in each bandgap. When the
defect strength is negative, there is a defect-mode branch in the first bandgap and are many defect-mode
branches in higher bandgaps. For a given defect strength, the strongest confinement of the defect modes
appears in the semi-infinite bandgap when the defect strength is positive and in the first bandgap when
the defect strength is negative. On the other hand, these defect modes are those studied previously in
optically induced photonic lattices in biased non-photovoltaic–photorefractive crystals when the bulk
photovoltaic effect is negligible and predict those in optically induced photonic lattices in photovol-
taic–photorefractive crystals when the external bias field is absent.

Crown Copyright � 2012 Published by Elsevier B.V. All rights reserved.

Light propagation has been widely researched in periodic pho-
tonic lattices because of its physics and light-routing applications.
At present, a wide variety of solitons in uniformly periodic
photonic lattices are known: fundamental solitons [1–7], dipole
solitons [8,9], vortex solitons [10–14], reduced-symmetry solitons
[15], embedded-soliton trains [16], and so on—many of which have
been experimentally observed. In uniformly periodic photonic lat-
tices, a new feature is the existence of bandgaps inside Bloch
bands, where linear light propagation is forbidden because of the
repeated Bragg reflections. To guide light in periodic media, one
of the convenient ways is to introduce a defect into the periodic
medium. Such a defect can support defect modes in bandgaps of
the periodic medium. Defects and the corresponding defect modes
have been investigated in photonic crystals [17]. In photorefractive
crystals, optically induced reconfigurable photonic lattices with
and without defects have been successfully generated [2,6,18]. De-
fect modes in one-dimensional (1D) photonic lattices were the first
to have been proposed [19,20] and observed [21]. Defect solitons in
1D photonic lattices have been theoretically analyzed [22]. In 2D
photonic lattices, defect modes [23] and defect solitons [24] have
also been predicted. However, these studies focused on optically
induced photonic lattices in biased non-photovoltaic–photorefrac-
tive crystals. Therefore, it is interesting to know whether optically

induced photonic lattices can support defect modes in photovol-
taic–photorefractive crystals with and without the external bias
field.

In this paper, we report on that defect modes in optically in-
duced photonic lattices in biased photovoltaic–photorefractive
crystals can exist in different bandgaps when the defect strength
is changed. We show that for a positive defect, there is a defect-
mode branch in each bandgap and that for a negative defect, there
is a defect-mode branch in the first bandgap and are many defect-
mode branches in higher bandgaps. We find that for a given defect
strength, the strongest confinement of the defect modes appears in
the semi-infinite bandgap when the defect strength is positive and
in the first bandgap when the defect strength is negative. When the
bulk photovoltaic effect is negligible, these defect modes are those
studied previously in optically induced photonic lattices in biased
non-photovoltaic–photorefractive crystals. When the external bias
field is absent, these defect modes predict those in optically in-
duced photonic lattices in photovoltaic–photorefractive crystals.

To start, let us consider an ordinarily polarized lattice beam
with a single-site defect that propagates in a photovoltaic–photo-
refractive crystal along the z axis and is allowed to diffract only
along the x direction. For demonstration purposes, let the photo-
voltaic–photorefractive crystal be LiNbO3 with its optical c axis ori-
ented along the x direction. Moreover, let us assume that an
extraordinarily polarized probe beam with a very low intensity is
launched into the defect site and that the external bias electric field
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is applied in the x direction (i.e., the c axis). This probe beam is
incoherent with the lattice beam and propagates collinearly with
it. Under these conditions, the perturbed extraordinary refractive
index along the x axis is given by n02e ¼ n2

e � n4
e r33Esc , where ne is

the unperturbed extraordinary index of refraction, r33 is the elec-
tro-optic coefficient, Esc = iEsc is the induced space-charge electric
field, and i is the unit vector pointing to the c-axis direction. The
electric-field component E of the probe beam is then expressed
as usual in terms of slowly varying envelope /(x, z), that is E = /
(x, z)exp(ik1z), where k1 = k0ne, k0 = 2p/k0 is the wave number,
and k0 is the free-space wavelength of the lightwave employed.
At this point, the power density profile of the probe beam, I(x, z),
can be also expressed in terms of the envelope /(x, z) by use of
Poynting’s theorem, i.e., I = (ne/2g0)|/|2, where g0 represents the
free-space intrinsic impedance. By employing standard procedures,
we readily obtain the following paraxial equation of diffraction
[25]

i2k1
@/
@z
þ @

2/
@x2 � k2

0 n4
e r33Esc

� �
/ ¼ 0: ð1Þ

Under steady-state conditions, the induced space-charge electric
field Esc can be obtained from the Kukhtarev–Vinetskii model and
it is approximately given by [26]

Esc ¼ E00
Id

I0L þ Id
� E0p

I0L
I0L þ Id

: ð2Þ

In the above equation, we have assumed that the probe beam is a
very low intensity. Moreover, the constant field E00 can be obtained
from the potential condition

H
Esc � dl ¼ 0, E0p is the photovoltaic field

constant, and Id is the dark irradiance of the crystal. I0L ¼ I00 cos2

x½1þ dfDðxÞ� is the intensity function of the photovoltaic–photore-
fractive lattice, where I00 is the peak intensity of the otherwise uni-
form photonic lattice (i.e., far away from the defect site), fD(x) is a
localized function describing the shape of the defect, and d controls
the strength of the defect. For a positive defect d > 0, the lattice light
intensity I0L at the defect site is higher than that at the surrounding
sites. For a negative defect d < 0, the lattice intensity I0L at the defect
site is lower than that at the surrounding sites. When d = �0.75, the
corresponding lattice intensity profile is displayed in Fig. 8s. For
convenience, let us adopt the following dimensionless variables
and coordinates, i.e., let Z = z/(2k1T2/p2), X = x/(T/p), and / = (2g0Id/
ne)1/2U, where T is the lattice spacing. By employing these latter
transformations and by substituting Eq. (2) into Eq. (1), the nondi-
mensionalized model equation is found to satisfy:

i
@U
@Z
þ @

2U

@X2 �
E0

1þ IL
U þ Ep

IL

1þ IL
U ¼ 0; ð3Þ

where

IL ¼ I0 cos2 Xf1þ dfDðXÞg; ð4Þ

E0 ¼ E00=ðp2=T2k2
0n4

e r33Þ; Ep ¼ E0p=ðp2=T2k2
0n4

e r33Þ, and I0 ¼ I00=Id. In this
paper, let us assume that fD(X) = exp(�X8/128), which shows that
the defect is restricted to a single lattice site at X = 0. Notice that
other choices of single-site defect functions fD(X) give similar re-
sults. Moreover, we consider the following examples: Let k0 =
0.5 lm, T = 20 lm, and I0 = 3. The LiNbO3 parameters are taken here
to be ne = 2.2, r33 = 30 � 10�12 m/V, and E0p ¼ 40 kV=cm. For this set
of values, Ep � 18, one X unit corresponds to 6.4 lm, one Z unit cor-
responds to 2.2 mm, and one E0 unit corresponds to 222 V/mm. The
second term of Eq. (3) describes the diffraction spreading of the
probe beam. The third and fourth terms describe the influence of
drift and photovoltaic effect of the photorefractive nonlinearity,
respectively. The third term supports defect modes studied previ-
ously in optically induced photonic lattices in biased non-photovol-
taic–photorefractive crystals [19,20], whereas the fourth term

supports defect modes in optically induced photonic lattices in pho-
tovoltaic–photorefractive crystals, which will be demonstrated in
what follows. The value of E0 is associated with the applied external
electric field.

In order to analyze defect modes in the bandgaps, let us first
understand the dispersion relation and bandgap structure of Eq.
(3) with d = 0. According to the Bloch theorem, eigenfunctions of
Eq. (3) with d = 0 can be sought in the form of U(X, Z) = u(X) ex-
p [ikX – ibZ], where k is wave number in the first Brillouin zone
bounded between �1 6 k 6 1, b is the diffraction relation, u(X) is
a periodic function with the same period p (in normalized units)
as the potential term IL with d = 0. Substitution of this latter form
of U(X, Z) into Eq. (3) with d = 0 yields

@2u

@X2 þ 2ik
@u
@X
� k2U � VðXÞU ¼ �lU; ð5Þ

where

VðXÞ ¼ E0

1þ I0 cos2ðXÞ �
EpI0 cos2ðXÞ

1þ I0 cos2ðXÞ : ð6Þ

Eq. (5) gives the dispersion relation, which contains an infinite
number of branches in the first Brillouin zone. Each branch corre-
sponds to a Bloch band. The gaps between adjacent branches are
the bandgaps. Fig. 1 depicts the dispersion relation of a uniform lat-
tice at E0 = 12, Ep = 18, and I0 = 3. It reveals that there exist four
complete gaps which are named the semi-infinite, first, second,
and third gaps, respectively. Fig. 2 illustrates the bandgap structure
at various values of E0 when Ep = 18 and I0 = 3. Bloch states on the
edges of Bloch bands are important because defect modes bifurcate
from such Bloch states, as shown in Fig. 4. On these edges, k = 0 or
k = ±1. The first six Bloch states at E0 = 12, Ep = 18, and I0 = 3 are
shown in Fig. 3. Bloch states on the edges of first and third Bloch
bands are symmetric, and Bloch states on the edges of second Bloch
band are antisymmetric, in X.

We seek the defect modes in Eq. (3) in the form

UðX; ZÞ ¼ uðXÞ expð�ibZÞ; ð7Þ

where function u(X) is localized in X and b is a propagation constant
lying inside bandgaps of the periodic lattice. Substitution of Eq. (7)
into Eq. (3) yields

d2u

dX2 þ b� E0

1þ IL
þ Ep

IL

1þ IL

� �
u ¼ 0; ð8Þ

from which the mode u(X) can be determined by a numerical meth-
od. Such a numerical method is to expand the solution u(X) into dis-
crete Fourier series and then convert Eq. (8) into a matrix
eigenvalue problem with b as the eigenvalue [20].

Fig. 1. Dispersion relation of a uniform lattice at E0 = 12, Ep = 18, and I0 = 3. Bloch
states at circled locations are shown in Fig. 3.
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