Optical Materials 33 (2011) 791-798

Contents lists available at ScienceDirect

Optical Materials

Optical investigation of Eu³⁺:PbF₂ ceramics and transparent glass-ceramics

C. Bensalem^{a,b}, M. Mortier^{a,*}, D. Vivien^a, M. Diaf^b

^a Laboratoire de Chimie de la Matière Condensée de Paris, CNRS-UMR 7574, ENSCP, 11 rue Pierre et Marie Curie, 75005 Paris, France ^b Département de Physique, Université d'Annaba, BP 12, 23000 Annaba, Algeria

ARTICLE INFO

Article history: Received 25 January 2010 Received in revised form 9 December 2010 Accepted 30 December 2010 Available online 1 February 2011

Keywords: Oxyfluoride glasses Glass-ceramic Eu³⁺ ions Fluorescence Thermal analysis Crystallization

ABSTRACT

This paper reports an optical investigation of glass–ceramics formed by annealing glasses with compositions 50 GeO₂–40 PbO–10 PbF₂–*x* EuF₃, *x* = [0.5; 1; 1.5; 2] and polycrystalline ceramics with composition 100 PbF₂, *y* EuF₃, with *y* = 5, 10, 15 and 20. For each material, the photoluminescence spectrum and the photoluminescence lifetimes of the ${}^{5}D_{0}$, ${}^{5}D_{1}$ and ${}^{5}D_{2}$ Eu³⁺ levels are measured. Occurrence of Eu³⁺:β-PbF₂ nanocrystallites in the glass–ceramics is confirmed and total ceramisation requires more than 10% of EuF₃ with respect to PbF₂ in the starting glass.

In the Eu³⁺: β -PbF₂ ceramics and glass–ceramics, Eu³⁺ ions replace Pb²⁺ in their regular cubic site, but they interact together to form dimers and higher nuclearity clusters. These two species are easily distinguished according to their photoluminescence decay rate. For the EuF₃ rates investigated here, there are no isolated Eu³⁺ ions in the PbF₂ lattice.

A preliminary investigation of the optical properties of co-doped Gd^{3+} : Eu^{3+} : β -PbF₂ ceramics was also performed. It shows that mixed Gd^{3+} - Eu^{3+} dimers and clusters are formed, and that efficient $Gd^{3+} \rightarrow Eu^{3+}$ energy transfer occurs in these ceramics. The Pb²⁺ ions of the lattice may also be involved in the energy transfer process.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Studied from tens of years [1], the transparent glass–ceramic systems have been identified more recently to be promising materials for optical amplification in compact optical communications setup [2,3]. Obtained with standard glass technology followed by controlled devitrification induced by glass annealing, glass–ceramics doped with lanthanide ions offer narrower emission linewidths and higher emission cross-section than their parent's glasses thanks to simultaneous crystallization of a phase and segregation of the lanthanide inside this crystal phase [4,5]. Therefore, they combine easy processing ability of glasses and outstanding optical properties of the crystals. For about 10 years, we are investigating lanthanides-activated transparent oxyfluoride glass–ceramics in which the doping ions are confined in β -PbF₂ nanocrystals embedded in an oxide glassy matrix [5–9].

The present investigation was performed in order to gain a better knowledge of the local environment of the lanthanide ion in the glass–ceramic. As lanthanide ion in this study, we used Eu^{3+} , introduced in the parent glass composition as EuF_3 . The optical properties of this ion are very sensitive to its environment [10] and this explains why the Eu^{3+} ion in solids has frequently been used as a luminescent structural probe [11].

* Corresponding author. *E-mail address:* michel-mortier@chimie-paristech.fr (M. Mortier). Several studies [12–19] have already been devoted to the thermal and photoluminescence properties of transparent glass-ceramic containing Eu³⁺:PbF₂ nanocrystals, using EuF₃-doped lead–cadmium or lead fluorosilicate or fluorogermanate as parent glasses.

We are reporting here the optical properties of various Eu^{3+} doped fluorogermanate glass–ceramics obtained by devitrification of EuF_3 -doped lead fluorogermanate glasses whose properties have been reported in a previous paper [20].

With respect to the already published studies, the present one includes an investigation of the Eu^{3+} :PbF₂ ceramics with the same europium content than the transparent glass–ceramics in a broad composition range. We also present a detailed study of the fluores-cence dynamics of the Eu^{3+} ⁵D₂ and ⁵D₁ levels, which allows concluding that, in the composition range studied: 5–20% Eu/Pb ratio, all the Eu^{3+} ions lie in clusters of various nuclearities.

Additionally, efficient $Gd^{3+}-Eu^{3+}$ energy transfer was recently demonstrated in a variety of compounds [21–23] and, based on these materials, photon-cutting phosphors with quantum efficiency reaching almost 200% were proposed [24–27]. Such materials are needed for mercury-free fluorescent lamps and plasma display panels [28,29] which are excited by xenon discharge in the VUV. For such application, fluorides, with their large band-gaps leading to optical transparency in the VUV, are the best choice. Furthermore, it has been shown recently that Pb²⁺, in a fluoride compound, can be used as a sensitizer of the Gd³⁺–Eu³⁺ pair [30]. This

^{0925-3467/\$ -} see front matter \odot 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.optmat.2010.12.024

suggests that transparent glass-ceramics containing Gd³⁺:Eu³⁺: β -PbF₂ nanocrystals may be promising as photon-cutting phosphors. A preliminary optical study of a Gd³⁺-Eu³⁺ co-doped β -PbF₂ polycrystalline sample will be presented here. It shows that energy transfer from Gd³⁺ to Eu³⁺ ions does occur in this system.

2. Experimental

2.1. Sample preparation

The reagents used in the synthesis of the materials were: GeO_2 (5N, Preussag); PbO (2N, Alpha Aesar); PbF₂ (4N, Alpha Aesar); EuF₃ and GdF₃ (4N, REacton).

2.1.1. Eu³⁺:PbF₂ containing glass–ceramics

At first, a family of EuF_3 -doped lead fluorogermanate glasses having the following molar compositions: 50 GeO₂-40 PbO-10 PbF₂-*x* EuF₃, *x* = [0.5; 1; 1.5; 2] was prepared as described in a previous paper [20]. Then, the glasses were heated at 390 °C for 10 h. Since it has been shown that this devitrification process lead to a glass–ceramic made of Eu³⁺:β-PbF₂ nanocrystals embedded in a glassy oxide matrix [12,17–20], the glass–ceramics will be labelled GC10*x*, assuming a total segregation of europium in the Eu³⁺:PbF₂ nanocrystals.

2.1.2. Eu^{3+} : PbF₂ ceramics

Eu³⁺:PbF₂ ceramics of the compositions 100 PbF₂, *y* EuF₃, with y = 5, 10, 15 and 20 (hereafter labelled Cy) were prepared by crushing together in an agate mortar oven-dried commercial PbF₂ and EuF₃ in appropriate amounts. The mixture was then heated at 550 °C for 3 h. It appeared essential to avoid partial oxidation of PbF₂ into lead oxyfluoride at the reaction temperature. This can be achieved by conducting the heat treatment under vacuum. X-ray diffraction was used to check the purity of the as prepared Cy materials.

Two mixed $Eu^{3+}-Gd^{3+}$ polycrystalline ceramics having the following compositions: PbF₂-0.05 GdF₃-0.1 EuF₃ and PbF₂-0.1 GdF₃-0.05 EuF₃ were also prepared in a similar manner than for the Eu³⁺:PbF₂ ceramics.

2.2. Optical measurements

The photoluminescence spectra were recorded at room temperature under excitation at 467 nm, in the Eu^{3+ 5}D₂ level. The spectra were obtained with a computer-monitored system associating a pulsed source (OPO pumped by the 3rd harmonic of a Q-switched Nd:YAG laser), a 25 cm monochromator and a CCD camera which allows recording the fluorescence spectrum for different gate width (GW) and delay (PD) after the laser excitation pulse. This setup was used to obtain the time-resolved luminescence spectra, luminescence decay profiles and to measure the room temperature fluorescence lifetime (τ_{5D_j}) of the ⁵D₀, ⁵D₁ and ⁵D₂ Eu³⁺ energy levels in the different glass-ceramics and ceramics.

Luminescence excitation spectra between 250 and 600 nm at room temperature were obtained using a Cary Eclipse UV–Visible spectrophotometer. Usually, the ${}^5D_0 \rightarrow {}^7F_2$ transition at 612 nm was monitored. The photoluminescence spectra of co-doped Gd³⁺:Eu³⁺: β -PbF₂ ceramics exited at 312 nm were also recorded with this spectrometer.

Fig. 1. Room temperature photoluminescence spectrum of the GC15 glass–ceramic recorded with PD = 50 ns and GW = 50 µs. The excitation wavelength was 467 nm, corresponding to the ${}^7F_0 \rightarrow {}^5D_2$ transition. The observed transition ${}^5D_j \rightarrow {}^7F_{j'}$ are labelled according to their *j* (above) and *j'* (below) values. $\varDelta_{1/2}$ is the linewidth at half maximum of the two ${}^5D_0 \rightarrow {}^7F_1$ components. *: Trace of the excitation laser pulse.

3. Results

3.1. Photoluminescence of the Eu^{3+} :PbF₂ glass-ceramics and ceramics

Fig. 1 display the photoluminescence spectrum of GC15 obtained with PD = 50 ns and GW = 50 μ s, under excitation at 467 nm into the Eu³⁺ ⁵D₂ level. Such parameters emphasize the contribution of the short lived ⁵D₂ and ⁵D₁ Eu³⁺ emissions with respect to the long lived ⁵D₀ one (see Section 3.2.2), so that the emission from the three emitting ⁵D levels can be displayed on one single scale. In all the ceramics and glass–ceramics studied, transitions arising from the ⁵D₂, ⁵D₁ and ⁵D₀ levels are observed.

The photoluminescence spectra of the GC15 glass precursor, GC15 glass–ceramic and C15 ceramic recorded with PD = 50 ns and GW = 1 ms are gathered in Fig. 2. With such parameters, which

Fig. 2. Room temperature photoluminescence spectrum of the GC15 glass precursor (a trace), GC15 glass–ceramic (b trace) and C15 ceramic (c trace) recorded with PD = 50 ns and GW = 1 ms. The three spectra have been normalized on the strongest peak of the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition.

Download English Version:

https://daneshyari.com/en/article/1495653

Download Persian Version:

https://daneshyari.com/article/1495653

Daneshyari.com