FLSEVIER

Contents lists available at SciVerse ScienceDirect

Optical Materials

journal homepage: www.elsevier.com/locate/optmat

Effects of NaCl flux on microstructure and luminescent characteristics of KSrPO₄:Eu²⁺ phosphors

Yan-Kuin Su^{a,b}, Yu-Ming Peng^a, Ru-Yuan Yang^{c,*}, Jian-Liang Chen^c

- a Institute of Microelectronics, Department of Electrical Engineering and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701, Taiwan
- ^b Department of Electronic Engineering, Kun-Shan University, Tainan 710, Taiwan
- ^c Graduate Institute of Materials Engineering, National Pingtung University of Science and Technology, Pingtung County 912, Taiwan

ARTICLE INFO

Article history: Received 6 December 2011 Received in revised form 14 March 2012 Accepted 16 March 2012 Available online 6 May 2012

Keywords:
Phosphors
KSrPO₄
Flux
NaCl
Luminescence

ABSTRACT

KSr $_{0.99}$ PO $_4$:0.01Eu $^{2+}$ phosphors were synthesized in succession by adding different NaCl flux concentrations (0, 2, 4 and 6 wt.%). The sintering condition was set at 1300 °C for 3 h under 97% N $_2$ /3% H $_2$ atmosphere. The effect of NaCl flux on the microstructural and luminescent characteristics of KSr $_{0.99}$ PO $_4$:0.01Eu $^{2+}$ phosphors were investigated and discussed. The XRD results showed that the phase purity of KSr $_{0.99}$ PO $_4$:0.01Eu $^{2+}$ phosphors could be improved after adding NaCl flux. The EDS data showed that the peaks of NaCl flux were not detected. The SEM images showed that the particle size became bigger when more NaCl flux was added. It was also observed that many little fragments on the surface appeared as the NaCl flux increased to 4 wt.% and 6 wt.%. Additionally, all of the KSr $_{0.99}$ PO $_4$:0.01Eu $^{2+}$ phosphors emitted blue luminescence under UV excitation. The use of the NaCl flux in KSrPO $_4$ may cause the change the crystal field of KSrPO $_4$ but not the change in the energy transfer mechanism among Eu $^{2+}$ ions.

Crown Copyright © 2012 Published by Elsevier B.V. All rights reserved.

1. Introduction

Because of high luminous efficiency, energy-saving, long lifetime and environmental protection properties, white light-emitting diode (WLED) has attracted a significant attention over the past few years as a potential replacement for incandescent and fluorescent light sources [1]. At present, the most popular method to generate white light is to use a blue LED chip and a yellow-emitting phosphor, usually made of cerium doped yttrium aluminum garnet (YAG:Ce³⁺) [2]. However, the WLED produced using this method have the following problems: variation of white emitting color with different input powers and low color rendering index due to two-color mixing. Recently, a new approach that uses the red/green/blue tricolor phosphors excited by ultraviolet (UV) or near UV chips to generate white light was suggested [3]. The two advantages in this approach include, high color tolerance and excellent color rendering index.

Because of UV excited phosphors, phosphate compounds such as ABPO₄ (A: Li. Na and K; B: Mg. Ca and Sr) have become an important family of luminescent materials. The rigid tetrahedral three dimensional matrix of phosphate is thought to be ideal for charge stabilization [3–10]. It is known that the Eu²⁺ ion is an activator having a f-d broadband transitions. Therefore, the emission and

absorption spectra of Eu²⁺ ion usually consist of broad band (UV to red range) due to the transitions between the ${}^8S_{7/2}$ (4f_7) ground state and the crystal field components of the 4f⁶5d excited state configuration. Since the involved 5d orbital is external, the positions of the excitation and emission wavelength of Eu²⁺ strongly depend on the host crystal [1,3]. Moreover, the advantage of using Eu₂O₃ in phosphors is that its quantum efficiency can approach unity in a suitable crystalline environment [1]. Thus, in recent years there have been many reports on Eu²⁺-doped phosphate phosphors applied not only on WLED, but also plasma display panels, medical devices, and others [4–6]. There are many methods for preparing the phosphate series phosphors, such as solid-state reaction [3-7], co-precipitation [8] and combustion method [9]. However, the co-precipitation and combustion methods have disadvantages of large energy loss for the removal of organic elements during calcining process and difficulties in controlling powder morphology, thus reducing the ease of industrial mass production. Although the solid-state reaction also has some disadvantages of high firing temperature, long duration time and low chemical uniformity, it can be improved by adding different flux additions [10-14]. A flux method is well-known to accelerate the kinetics of the formation of the desired materials by enhancing diffusion coefficients. Therefore, the flux method has potential advantages such as the mass productivity and the ability to obtain fine particle morphology as well as the control of the particle size of products and so on [13,14]. Moreover, it was reported that in the

^{*} Corresponding author. Tel.: +886 8 7703202x7555; fax: +886 8 7740552. E-mail address: ryyang@mail.npust.edu.tw (R.-Y. Yang).

high temperature sintering, the fluxes affected the ionic diffusions, the crystallite size distribution, crystallization and the formation of the phosphors [15]. In order to improve the drawback of the solidstate reaction, a flux addition has been developed in research [13-20]. Kottaisamy et al. and Lee et al. confirmed that flux method could affect the particle size distribution of phosphor as well as growth condition [16,17]. Additionally, Park et al. also found that the AlF₃ and H₃BO₃ fluxes of alkali- or alkaline earth metals not only improved the particle morphology but also reduced the sintering temperature [18]. Lee et al. reported that the phosphor powder prepared without the flux BaF2 had irregular morphologies and aggregated structure [19]. Additionally, with adding the flux such as BaF₂, the photoluminescence intensities of phosphor can be improved [20]. Thus, the application of phosphor in WLED leads to an optimized particle size distribution due to a better packing density. However, there has been no study on the effect of the addition of NaCl flux on the microstructure and luminescent characteristics of KSrPO₄:Eu²⁺ phosphors.

In this paper, the KSrPO₄:Eu²⁺ phosphors were synthesized via the solid-state reaction. The effects of different concentrations of NaCl flux on the microstructure and luminescent characteristics of the KSrPO₄:Eu²⁺ phosphors were investigated by using X-ray diffraction (XRD), energy dispersive spectrometer (EDS), scanning electron microscopy (SEM) and photoluminescence (PL) measurement.

2. Experimental procedure

2.1. Samples preparation

SrCO₃, KH₂PO₄ and Eu₂O₃ powders all with a purity of 99.9% were used as the starting materials for the KSrPO₄:Eu²⁺ phosphors. The molar ratios for SrCO₃, KH₂PO₄ and Eu₂O₃ powders were kept at 0.99: 1: 0.01 to form a KSr_{0.99}PO₄:0.01Eu²⁺ phosphor. The powders were mixed with alcohol for the solvent and ball-milled for 1 h with zirconia balls and different concentrations (0, 2, 4 and 6 wt.%) of NaCl flux were added. The addition of the NaCl flux is expected to lower the melting temperature, thus dissolving one or more of the components in the reaction region without entering into the solid-state reaction [10,11]. After drying, the mixed powders were placed on an Al₂O₃ crucible in a tube furnace and then sintered in a tube furnace to form the KSr_{0.99}PO₄:0.01Eu²⁺ phosphors. For most phosphate series phosphors, the sintering temperature is set as 1300 °C for 3 h with an average heating rate of 2 °C/ min [4.5]. The sintering atmosphere is 97% N₂/3% H₂, a reduction atmosphere used to reduce Eu³⁺ to Eu²⁺. After sintering, the phosphor samples were cooled to room temperature and then characterized.

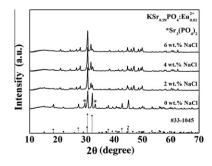
2.2. Characterization

The crystalline phases of the phosphors were identified using X-ray diffraction (XRD, Bruker D8 Advance) analysis with Cu K α radiation of λ = 1.54 Å using a Ni filter, and with a secondary graphite monochromator. A scan range of 2θ = 10–70 $^{\circ}$ with a step of 0.03 $^{\circ}$ and 0.4 s as a count time per-step were used. The constituent elements of the phosphors were detected by energy dispersive spectrometer (EDS, JSM-6400F, JEOL, Japan) analysis. The scanning electron microscopy (SEM; HORIBA EX-200) was used to observe particle morphology of the phosphors. The excitation, emission spectra and fluorescence decay time were obtained using photoluminescence measurement (PL, JASCO FP-6000), which was equipped with a 150 W Xenon lamp as the light source. For accuracy of data, the specimens were measured within the same

sample holder to ensure the consistent amount of phosphor materials in all samples.

3. Results and discussion

3.1. Structure


Fig. 1 shows the X-ray diffraction patterns of KSr_{0.99}PO₄:0.01Eu²⁺ phosphors with different concentrations of NaCl flux sintered at 1300 °C for 3 h. The XRD result shows that the KSr_{0.99}PO₄:0.01Eu²⁺ phosphor without NaCl flux contains an impurity phase "Sr₃(PO₄)₂" This indicates that starting materials sintered at 1300 °C for 3 h fail to convert completely into the KSrPO₄ lattice. Thus, the sintering temperature should be higher than 1300 °C. It is clearly observed that the phase purity could be improved with the addition of NaCl flux. All the $KSr_{0.99}PO_4$:0.01 Eu^{2+} phosphors prepared with addition of NaCl flux sintered at 1300 °C for 3 h show a single phase. This is according to the data reported for KSrPO₄ powder in JCPDS #33-1045, which demonstrate that the KSr_{0.99}PO₄:0.01Eu²⁺ phosphors is an orthorhombic structure with space group Pnma and lattice constants $a \sim 7.35$ Å, $b \sim 5.56$ Å, $c \sim 9.64$ Å and $\alpha = \beta = \gamma = 90^\circ$. The NaCl flux addition speeds up the kinetics of the formation of the desired KSrPO₄ phosphors by enhancing diffusion coefficients, dissolving one or more of the components and then permitting material transport to the reaction region to enhance the sintering [12].

3.2. Element analysis

Fig. 2 shows the EDS data of $KSr_{0.99}PO_4$: $0.01Eu^{2+}$ phosphors sintered at 1300 °C for 3 h with NaCl flux of (a) 0 wt.%, (b) 2 wt.%, (c) 4 wt.% and (d) 6 wt.%. It showed the existence of Eu^{2+} element in the $KSrPO_4$: Eu^{2+} powders after combining with the XRD results. Moreover, it is also found that K, Sr, Eu, P, and O elements are well maintained in the $KSr_{0.99}PO_4$: $0.01Eu^{2+}$ phosphor powders. On the other hand, the peaks of NaCl were not detected. These results are consistent with the reports from Lo et al. [21], because the flux materials are unable to enter the solid-state reaction to form the end-product [13].

3.3. Morphology

Fig. 3 shows the SEM images of $KSr_{0.99}PO_4$:0.01Eu²⁺ phosphors sintered at 1300 °C for 3 h with NaCl flux of (a) 0 wt.%, (b) 2 wt.%, (c) 4 wt.% and (d) 6 wt.%. It is clearly with addition of NaCl flux, the particle size of the sintered $KSr_{0.99}PO_4$:0.01Eu²⁺ phosphors can be enhanced. The average particle sizes of the $KSr_{0.99}PO_4$: 0.01Eu²⁺ phosphors with NaCl flux of 0, 2, 4 and 6 wt.% are around 2, 4, 6 and 8 μ m, respectively. In the case of 2 wt.% NaCl flux, as

Fig. 1. XRD pattern of KSr $_{0.99}$ PO $_4$:0.01Eu $^{2+}$ phosphors with different concentrations of NaCl flux sintered at 1300 °C for 3 h.

Download English Version:

https://daneshyari.com/en/article/1495707

Download Persian Version:

https://daneshyari.com/article/1495707

<u>Daneshyari.com</u>