Optical Materials 34 (2012) 1128-1136

Contents lists available at SciVerse ScienceDirect

Optical Materials

journal homepage: www.elsevier.com/locate/optmat

Investigating the zero-field splitting parameters of $3d^5$ ions (Mn^{2+} and Fe^{3+}) doped $\alpha\text{-Al}_2O_3$ crystal

Muhammed Açıkgöz*

Faculty of Arts and Sciences, Bahcesehir University, Beşiktaş 34353, İstanbul, Turkey

ARTICLE INFO

Article history: Received 23 October 2011 Received in revised form 2 January 2012 Accepted 13 January 2012 Available online 11 February 2012

Keywords: Spin Hamiltonians Crystal structure Crystal and ligand fields Mn²⁺ Fe³⁺

1. Introduction

Corundum (α -Al₂O₃) is the thermodynamically stable morph of aluminum oxide (alumina, Al₂O₃). The single crystal form of α -Al₂O₃ known as sapphire finds very significant role in a wide variety of important applications, i.e. [1–3]. Also it is broadly used as a catalyst for diverse processes [4]. When Al₂O₃, as an oxide ceramic material, is doped with the transition-metal ions (Fe³⁺, Mn²⁺, etc.), its magnetic, electric and mechanical properties may be changed significantly [5].

In order to describe electron paramagnetic resonance (EPR) spectra of $3d^5$ paramagnetic ions and analyze its results, both second b_q^2 (*D* and *E*) and fourth-rank b_q^4 (*a* and *F*) zero-field splitting (ZFS) parameters (ZFSPs) have great importance in low symmetry fields.

Some different local structural distortion models around the transition ions Ni²⁺ [6], Cr⁴⁺ [7], Co²⁺ [8], Fe³⁺ [9], and Mn²⁺ [10] in α -Al₂O₃ were reported. Mainly, transition ions are expected to occupy the Al³⁺ ion center as a substitutional site. Apart from [8], in [6,7,9,10], the authors considered only the Al³⁺ sites for the doped transition ions to replace. However, this substitution was considered not as an exact replacement but a displacement along threefold axis towards the empty octahedral site [11,12]. The local lattice structures around impurity Mn²⁺ [10] and Fe³⁺ [9] ions at Al³⁺ sites were previously studied using the same theoretical method, which depended on the diagonalization of the energy matrices.

ABSTRACT

The characteristics of the local environment around paramagnetic centers formed by $3d^5$ ions (Mn^{2+} and Fe^{3+}) in α -Al₂O₃ crystal are investigated using theoretical analysis. The zero-field splitting (ZFS) parameters (ZFSPs) for Mn^{2+} and Fe^{3+} ions located at the substitutional Al^{3+} sites and the interstitial sites are modeled using several modelling approaches through superposition model (SPM) and the fourth-order perturbation theory (PT) formula. The possible structural distortions resulting from Mn^{2+} and Fe^{3+} ions are determined around Al^{3+} sites with C_{3v} symmetry and interstitial sites with D_{3d} symmetry. The results are discussed in respect to the potential of the sites to be located by $3d^5$ ions and modelling approaches. © 2012 Elsevier B.V. All rights reserved.

In this study, different from the previous reports [9,10], we take into account the possibility of location of $3d^5$ ions not only at the substitutional Al^{3+} site but also at the interstitial site. Superposition model (SPM) and the fourth-order perturbation theory (PT) formula are employed to determine the pertinent ZFSPs for the transition metal centers located either at the Al^{3+} site or the interstitial site in α -Al₂O₃:Fe³⁺ and α -Al₂O₃:Mn²⁺. We achieve a detailed SPM analysis using reasonable ranges of the values from the relevant model parameters in literature. Theoretical predictions of both the second-rank b_2^0 and fourth-rank ZFS parameters b_4^q (q = 0, 3) for Mn²⁺ and Fe³⁺ ions in α -Al₂O₃ are carried out.

2. Crystal structure

The α -Al₂O₃ structure is on the basis of hexagonal close-packed (hcp) arrangement of oxygen anions, which represented by the α (trigonal) phase [13]. The elementary cell with *Z* = 6 includes two formula units consisting of four Al atoms and six O atoms. Eventhough the primitive unit cell of α -Al₂O₃ is rhombohedral (space group *R*-3*c* (No. 167)), it is commonly used to be described with the hexagonal symmetry in the literature [14]. Several hexagonal parameters have been reported for the lattice constants of α -Al₂O₃ as tabulated in Table 1. As shown in Fig. 1, they correspond to six oxygen layers along the *c*-axis [13]. Structural parameters of the host lattice, bond lengths between cations–anions and the angular positions of the oxygens ligands with respect to trigonal axis, for both the Al³⁺ sites and the interstitial sites of the α -Al₂O₃ are given in Table 2 as well. When a 3d⁵ transition ion substitutes for Al³⁺ cation, the distance of a ligand is different from

^{*} Tel.: +90 212 3810307; fax: +90 212 3810300. *E-mail address:* macikgoz@bahcesehir.edu.tr

^{0925-3467/\$ -} see front matter \odot 2012 Elsevier B.V. All rights reserved. doi:10.1016/j.optmat.2012.01.016

Table 1Lattice constants of α -Al₂O₃.

Lattice constants		Refs.
a (Å)	<i>c</i> (Å)	
4.785	12.991	[11]
4.759208	12.99202	[18]
4.75	12.97	[19]
4.7433	12.9763	[20]
4.7628	13.0032	[21]
4.7586	12.9897	[22]
4.7640	13.0091	[23]

Fig. 1. Single unit cell of α -Al₂O₃ crystal. Orientation of the crystallographic axes *a*, *b*, and *c* are shown.

the cation–anion distance in the host lattice due to the fact that the radius of the substitution atom r_s differs from that of the host atom r_h . In order to take this fact into account in the calculations we reasonably approximate ligand distances using the following formula [15]: $R_i \approx R_{hi} + \frac{1}{2}(r_s - r_h)$, where R_i and R_{hi} represent the ligand and cation–anion distances, respectively. So, using the cation–anion distances in Table 2 and the ionic radii of the substitutional and host ions, $r_s(Mn^{2+}) = 0.80$, $r_s(Fe^{3+}) = 0.63$, and $r_h(Al^{3+}) = 0.54$ [16,17] (in Å), we obtain R_i values as given in Table 2.

Table 2

The structural properties	of	α -Al ₂ O ₃	at	room	temperature.
---------------------------	----	--	----	------	--------------

3. Basic theory and analysis

Transition metal ions Mn^{2+} and Fe^{3+} belong to $3d^5$ electronic configuration. They are expected to substitute for Al^{3+} in α - Al_2O_3 structure. However, doped transition ions may occupy the interstitial sites, which are the center of vacant oxygen octahedron with the trigonal D_{3d} symmetry [11]. The aluminum cations occupy octahedrally coordinated sites where the local site symmetry may be approximated as C_{3v} [12]. Also, for the site symmetry of the Al sites, C_3 has been proposed in [26].

3.1. Superposition model analysis

The energy levels of the ground spin state of transition metal ions with the spin S = 5/2 systems at trigonal type I symmetry site (C_{3v}) in α -Al₂O₃ can be described by the spin Hamiltonian of the form [27–30]:

$$H = H_{Ze} + H_{ZFS} = g_{\perp} \mu_B (B_x S_x + B_y S_y) + g_{||} \mu_B B_z S_z + \frac{1}{3} b_2^0 O_2^0 + \frac{1}{60} \left(b_4^0 O_4^0 + b_4^3 O_4^3 \right)$$
(1)

where the first term represents the Zeeman electronic (Ze) and the second term represents the ZFS contribution consisting of ZFSPs associated with the extended Stevens operators O_k^q . We can derive the following explicit SPM expressions for the ZFSPs of a sixfold coordinated $3d^5$ ion in a ligand complex exhibiting trigonal symmetry [31,32]:

$$D_{(SPM)} = b_2^0 = \frac{3\bar{b}_2(R_0)}{2} \left[\left(\frac{R_0}{R_1} \right)^{t_2} (3\cos^2\theta_1 - 1) + \left(\frac{R_0}{R_2} \right)^{t_2} (3\cos^2\theta_2 - 1) \right]$$
(2)

$$b_{4}^{0} = \frac{3\bar{b}_{4}(R_{0})}{8} \left[\left(\frac{R_{0}}{R_{1}} \right)^{t_{4}} (35\cos^{4}\theta_{1} - 30\cos^{2}\theta_{1} + 3) + \left(\frac{R_{0}}{R_{2}} \right)^{t_{4}} (35\cos^{4}\theta_{2} - 30\cos^{2}\theta_{2} + 3) \right]$$

$$b_{4}^{4} = 105\bar{b}_{4}(R_{0}) \left[\left(\frac{R_{0}}{R_{1}} \right)^{t_{4}} \sin^{3}\theta_{1}\cos\theta_{1}\cos3\varphi_{1} + \left(\frac{R_{0}}{R_{2}} \right)^{t_{4}} \sin^{3}\theta_{2}\cos\theta_{2}\cos3\varphi_{2} \right]$$
(3)

where R_0 is the reference distance, $\overline{b_k}(R_0)$ are the intrinsic parameters and t_k are the power law exponents. In our calculations, for both Mn^{2+} and Fe^{3+} ions, three model parameter sets including $\overline{b_k}(R_0)$ and t_k are adopted from the source data given in [33,34] and [35,36] respectively suitable for the Mn^{2+} ions and Fe^{3+} ions surrounded by oxygen ligands with coordination number 6 (Table 3). These sets

Host structure		Ligand distances	Ligand distances				Angular positions		
R _{h1}	R _{h2}	$R_{i1} - Mn^{2+}$	$R_{i1} - Fe^{3+}$	$R_{i2} - Mn^{2+}$	$R_{i2} - Fe^{3+}$	$\theta_1(^o)$	$\theta_2(^o)$		
1.966 [11]	1.857 [11]	Al ³⁺ site 2.096	2.011	1.987	1.902	47.64 [11]	63.06 [11]		
1.975 [24]	1.853 [24]	2.105	2.020	1.983	1.898	47.74 [24]	63.12 [24]		
1.970 [25]	1.860 [25]	2.100 Interstitial Site	2.015	1.990	1.905	47.56 [25]	03.50 [25]		
1.978 [11]	1.978 [11]	2.108	2.023	2.108	2.023	56.85 [11]	56.85 [11]		

Download English Version:

https://daneshyari.com/en/article/1495826

Download Persian Version:

https://daneshyari.com/article/1495826

Daneshyari.com