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Abstract

We consider a model of a dissipative quantum-mechanical system consisting of weakly coupled quantum and classical subsystems.
The classical subsystem is assumed to be infinite, and thus serves as a means to transfer the energy of the quantum subsystem to the
infinity (actually, to dissipate the energy). The quantum-classical coupling is treated in the spirit of the mean-field approximation. Solving
the equations for the classical subsystem explicitly an effective dissipative Schrödinger equation for the quantum subsystem is obtained.
The proposed method is illustrated by calculating the shape of the nonlinear resonance.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

For a long time, the main task of the quantum-mechan-
ical description of physical systems was the calculation of
the energy levels (the eigenvalues of the stationary Schrö-
dinger equation) and the corresponding eigenfunctions as
the main features of the system. The optical and transport
properties of solids were mainly interpreted in terms of
quantum transitions between these stationary states. The
transitions were treated as momentary and calculated per-
turbatively by means of the Fermi’s golden rule. The inves-
tigation of the dynamics involved in a quantum transition
was started in the study of nuclear and electronic magnetic
resonances, and later, of resonant transitions in laser
amplifiers (see, for instance [1]). Recent experiments with
femtosecond light pulses have initiated the study of quasi-
particle dynamics in many-body systems of solids [2]. A
pivotal role in quantum mechanical dynamic processes is
played by dissipation as a way to balance the energy influx
to the system from the external fields. The standard tool to
describe dissipation in a quantum system is the density-

matrix equation [3] which is natural for an open system,
whereas the less arduous Schrödinger equation is reckoned
to be appropriate for an isolated system, mathematically
expressed by the hermiticity of the Hamiltonian.

With the present work, we emphasize that quantum dis-
sipation can be captured within the Schödinger-equation
formalism if the quantum-mechanical system under consid-
eration is coupled to a classical counterpart that includes
dissipative terms or is infinite, thus ensuring the transfer
of the energy away from the quantum subsystem. We con-
sider the interaction of a quantum oscillator with an infi-
nite classical chain in the mean-field approximation and,
explicitly solving the classical equations of the chain, derive
a dissipative Schrödinger-like equation for the quantum
system. The application of the obtained equation is illus-
trated by considering the nonlinear resonance.

2. Interaction of a quantum oscillator with a classical chain

We consider a quantum oscillator (described by the
operators x̂ and p̂Þ coupled to the end of a semi-infinite
classical string modeled by a chain of balls interconnected
by springs. The system is presented in Fig. 1 and described
by the Hamiltonian
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Following [4], we assume that the quantum oscillator is de-
scribed by the wave function W(x, t) which solves the
Schrödinger equation

i�h
o
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while the coordinates of the balls in the chain obey the clas-
sical Newton equations
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with the averaged Hamiltonian
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Z 1
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This averaging constitutes the main assumption of the qua-
si-classical approximation.

The standard classical equations for the chain
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are solved by the Fourier transformation
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tion (ka� 1). Then it follows from the boundary condition
(5a) that:
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The obtained equation of motion for the first ball (x0) to-
gether with the Schrödinger equation. (2) constitute the
complete set of equations that describe the behavior of
the dissipative quantum system. Introducing new dimen-
sionless coordinates by the transformation
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we rewrite the above set of equations as follows

i
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Note that we excluded terms which do not depend on the
operators x̂ and p̂ from (9b) as it can always be done by
the proper transformation of the wave-function phase.
The obtained equations describe the interaction of a quan-
tum-mechanical system with a single dissipative classical
mode x0. They are general and can be applied to any quan-
tum system with dissipation. For instance, in the case of a
nonlinear (anharmonic) oscillator subject to an external
time-periodic force we supplement the above Hamiltonian
with the following additional terms:

DH ¼ �x̂f cosðxtÞ þ ax̂4: ð11Þ
The dimensionless coupling constant (10) and the ratio
l0/l depends on the parameter m/M. Thus, in the adiabatic
case (m�M) the coupling constant is small, and this
smallness ensures adequacy of the presented quasiclassical
consideration.

3. Illustration

As an illustration, we consider the resonant absorption.
Close to the resonant frequency of the linear oscillator
(x = 1 + g, jgj � 1) it is convenient to expand the wave
function into the series of harmonic oscillator eigenfunctions

Wðx; tÞ ¼
X1
n¼0

anðtÞe�ixEntwnðxÞ; ð12Þ

where En = n + 1/2, and the functions wn can be expressed
in the standard way via Hermite polynomials. Inserting
(12) into Eq. (9), assuming slow time variation of the coef-
ficients an, and neglecting all oscillating terms (rotating
wave approximation) we arrive at the following set of
equations:
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Fig. 1. The layout of the system.
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