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a b s t r a c t

Motivation: Protein fold space is a conceptual framework where all possible protein folds exist and ideas
about protein structure, function and evolution may be analyzed. Classification of protein folds in this
space is commonly achieved by using similarity indexes and/or machine learning approaches, each with
different limitations.
Results: We propose a method for constructing a compact vector space model of protein fold space by
representing each protein structure by its residues local contacts. We developed an efficient method
to statistically test for the separability of points in a space and showed that our protein fold space
representation is learnable by any machine-learning algorithm.
Availability: An API is freely available at https://code.google.com/p/pyrcc/.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

All possible protein folds are assumed to occupy an abstract
space referred to as fold space. This fold space has become a con-
ceptual framework to unify ideas about protein structures with
protein function and protein evolution (Cheng and Brooks, 2013).
For instance, it is debated whether this space is discrete or contin-
uous (Kolodny et al., 2006; Skolnick et al., 2009; Sadreyev et al.,
2009). Relevant to our study is the common use of protein similar-
ity measures (e.g., root mean square deviation or RMSD) aimed to
infer their proximities in this space (Minary and Levitt, 2008). In
this case, the inference derived from such measurements assumes
that the proximity of protein folds is the only relevant property to
explain protein fold evolution and function.

Instead of focusing only on the proximity of protein folds, vector
space models have been used to expand the protein fold space rep-
resentation. In this space, each protein structure is represented in a
fixed dimension space (e . g ., euclidean space) by a point (position
vector); adjusting the positions of these vectors by approximating
their relative distances to protein similarity measures may derive
these position vectors. For example, using sequential structure
alignment program scores between each pair of structures as a
protein similarity measure (Orengo and Taylor, 1996), followed
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by multi dimensional scaling allowed the assignment of positions
vectors representing each protein structure (Michie et al., 1996).

Using DALI as similarity measure, Holm (Holm and Sander,
1998) showed two-dimensional projections to explore protein
neighbors in fold space. DALI has also been used as similarity mea-
sure to visualize class distribution and fold usages between two
bacterial species (Hou et al., 2003) and to explore protein func-
tion assignment based on position on this fold space representation
(Hou et al., 2005).

Fold space constructions based on protein structure similari-
ties have two important limitations. First, the time needed to run
a structural comparison for each pair of structures is restrictive:
25000 central processing unit hours were needed for calculating
similarities between 1898 protein structures (Hou et al., 2005).
Second, the position of each point depends heavily on the set of
structures being analyzed, and in such case the inclusion of a single
new structure can displace all previously assigned positions; thus,
there are as many fold space representations as different protein
structures data sets, even adopting a unique similarity score.

An alternative fold space representation may be built by
assigning the position of the vector considering only the structural
features of the protein it represents. In this way, a new structure
can find its location in this fold space without altering the existing
ones. One implementation of a vector space model is FragBag
(Budowski-Tal et al., 2010), which represents protein structures in
400 dimensions; here, each component in the vector representing
a protein fold corresponds to the number of occurrences of a
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Fig. 1. Proximity in space does not always imply membership to a class. The
figure illustrates cases where proximity in a space does not imply membership to a
class. Cross points define a class where distances between every pair of its members
should be less than the distance to any point belonging to other class, an assumption
made when using similarity scores. An exception to this assumption is represented
by the rhombus class members p and r, which distance is larger than for member
class p to a square class member q. This is true for any distribution within the classes.
To show this, circle class has a dense and regular distribution, rhombus class is
regular and sparse, while square is very sparse and irregular. In any case, each class
is clearly segregated. Please note that the different fold classes may be learned using
machine-learning classifiers, but here we illustrate that using similarity measures
as the only criterion to distinguish class membership may induce errors.

particular contiguous protein sequence fragment. Another
approach uses knot invariants as values in each component for
vector points in 30 dimensions (Rogen and Fain, 2003). In these
cases, it is assumed that proximal protein structures should belong
to the same structural class, assumption that is not necessarily
correct as we will argue below.

Once a protein fold space construction is chosen, a metric
distance induced by the space can be used as a measure of simi-
larity and it is expected to be in agreement with direct structural
measures (such as RMSD, GDT, TMscore, etc), but overcoming the
problems noted above about these scores not being a metric (Sippl,
2008).

In such space, a given set of protein structures that are consid-
ered to have the same fold may be close in this space representation.
Yet, it may occur that some proteins with different folds may be
closer than proteins with the same fold (see Figure 1). Thus, con-
fusion may be induced at distinguishing class membership in this
fold space when only similarity measures are considered.

To address this problem, the boundaries between proteins
with different folds may be obtained using empirical data and
machine learning algorithms, which naturally segregate protein
structures sharing common features. In these models it is also pos-
sible to evaluate the separability of this space independently of any
machine-learning algorithm using a statistical test (Zighed et al.,
2002). Therefore, it is possible to generate a protein fold space rep-
resentation independent on the protein similarity measure used
and to test for the separability of this space independently of any
particular classification algorithm. This protein fold space may then
be used to analyze protein structure-function relation and pro-
tein evolution without the limitations previously noted of current
protein fold space construction approaches.

In this work, we propose a compact (low dimensional) fold space
representation based on Residue Cluster Classes (RCCs), a Sperner
family that includes all sets of residues in simultaneous contact. We
also present an efficient computational method useful to test for the
separability of this fold space representation. As a proof of principle,
we analyzed the CATH classification and automatically detected
conflicts in CATH. Furthermore, we show that our method improves
state of the art protein structure neighbor retrieval methods. To
facilitate the construction of protein folds represented by RCCs, we
present an API available at https://code.google.com/p/pyrcc/.

2. Materials and Methods

2.1. Datasets

2.1.1. CATH datasets
CATHALL1 set includes all domains in CATH release v3.5 that

were parsable with our API and consists of 168964 domains.
CATHALL2 set includes all domains in CATH release v4.0 and con-
tains 235858 domains. CATCHOP was obtained from a random
sample of CATHALL1 considering only six domains per topology;
topologies with less than six members were excluded rendering a
total of 5220 domains (see supplemental Table S1 for a complete
list).

2.1.2. SCOP datasets
The SCOP30 dataset was provided by the authors of ContactLib

(Xuefeng Cui et al., 2014) and contains 3295 SCOP domains. SCOP30
contains 2639, 3232 and 3290 neighbours at SAS levels 20,35
and 50. Yet, only 2049, 2620 and 2722 domains have at least
one neighbor in SAS 20, 35 and 50, respectively. The SCOPtrain1
is a random sample of 136300 SCOP 1.75B. SCOPtrain2 contains
all 203025 domains from SCOP release v2.5. The SCOPtrainAUC
includes 109310 SCOPtrain domains absent in SAS50 group, and
only belonging to a class in SCOP30. If a class (at any level) contains
more than 2000 domains, 2000 domains were chosen randomly to
represent that class.

2.2. Construction of Residue Cluster Classes

2.2.1. Definitions
Residue Neighbourhood (N�(r)). Let P be a protein with residues

R = r1, r2, . . . , rn. The system �prim is defined as:

�prim = {{ri, rj} : there exists a bond between ri and rj}
Given a metric d : R × R → [0, ∞) and a cut-off distance �, the

neighbourhood N�(r) of a residue r is given by:

N�(r) = {x ∈ R : ∃a ∈ A(x), b ∈ A(r); d(a, b) ≤ �}
Where A(r) is the set of non-hydrogen atoms of residue r. Thus,

N�(r) is the set of all residues near r, i.e., they are at no more than a
distance � from r.

Residue Cluster (RC). A residue cluster on P is a subset A ⊆ 2R such
that A ⊆ N�(a) for all a ∈ A. If

∣∣A
∣∣ = k, then A is a k-Residue Cluster,

kRC
Residue Cluster Class (RCC). A class over a RC is defined by the

primary structure on �prim. A pair of residues ri, rj are contiguous
if {ri, rj}∈ �prim and a set s̄L of L residues form a segment in �prim if
it contains (L − 1) contiguous residues. By convention, s̄1 = {r} for
any r ∈ R.

Let be � the family of all segments in �prim. C is a set cover of a
k-Residue Cluster kRC if

C = { ¯sL˛ : ˛ ∈ A, ¯sL˛ ∈ �}
such that

kRC =
⋃

˛∈A
¯sL˛

and

ci ∩ cj = ∅, ∀ci, cj ∈ C

Therefore, C = ¯sL1 , ¯sL2 , ..., ¯sLA
is a covering if

A∑

i=1

Li = k
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