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A B S T R A C T

Antimicrobial peptides have emerged as new therapeutic agents for fighting multi-drug-resistant
bacteria. However, the process of optimizing peptide antimicrobial activity and specificity using large
peptide libraries is both tedious and expensive. Therefore, computational techniques had to be applied
for process optimization. In this work, the representation of the molecular structure of peptides
(mastoparan analogs) by a sequence of amino acids has been used to establish quantitative structure—
activity relationships (QSARs) for their antibacterial activity. The data for the studied peptides were split
three times into the training, calibration and test sets. The Monte Carlo method was used as a
computational technique for QSAR models calculation. The statistical quality of QSAR for the antibacterial
activity of peptides for the external validation set was: n = 7, r2 = 0.8067, s = 0.248 (split 1); n = 6,
r2 = 0.8319, s = 0.169 (split 2); and n = 6, r2 = 0.6996, s = 0.297 (split 3). The stated statistical parameters
favor the presented QSAR models in comparison to 2D and 3D descriptor based ones. The Monte Carlo
method gave a reasonably good prediction for the antibacterial activity of peptides. The statistical quality
of the prediction is different for three random splits. However, the predictive potential is reasonably well
for all cases. The presented QSAR modeling approach can be an attractive alternative of 3D QSAR at least
for the described peptides.

ã 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past decade, bacterial resistance has increased
dramatically leading to a huge global health problem (Overbye
and Barrett, 2005; Neu, 1992). Bacterial resistance is a natural
biological phenomenon that can be associated to their fight for
survival. Mechanisms of bacterial resistance to antibiotics are very
different and complex and depend both on the bacteria and the
structure of antibiotics. However, there are several known
mechanisms of antimicrobial resistance. In the first mechanism,
bacteria may acquire genes encoding antibiotic-inactivating
enzymes, like b- lactamases. In the second mechanism, bacteria
may acquire efflux pumps which prevent the antibacterial agent to
reach its target site. In the third mechanism, bacteria may acquire
several genes for a certain metabolic pathway that ultimately
produces altered bacterial cell walls. This leads to loosing the

binding site of the antimicrobial agent, or on the another hand,
bacteria may acquire mutations that can limit the access of
antimicrobial agents to the intracellular target site via the
downregulation of porin genes (Radu et al., 2011; Band and Weiss,
2015; Li et al., 2015). Antimicrobial peptides (AMPs) have recently
been recognized as suitable leads in several areas of drug discovery
due to their high affinity and specificity toward their targets and
quite favorable toxicity profiles (Dathe et al., 1996; Levy and
Marshall, 2004). A wide range of pathogen agents like bacteria,
viruses or fungi can be inhibited with AMPs through the
interaction and modulation of microbial membrane permeability
(Bowdish and Hancock, 2005; Brandenburg et al., 2010). The main
physico-chemical features important for AMP selectivity for the
pathogen membrane are net electric charge, hydrophobicity and
peptide length (Yandek et al., 2009). However, the exact
mechanism of antimicrobial peptides against the membrane of
pathogen agents is still unknown. One of the most effective
antimicrobial peptides of great medical interest is mastoparan,
isolated from wasp venom (Amin et al., 2003; Hirata et al., 2000;* Corresponding author. Fax: +381 18 4238770.
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Hori et al., 2001; Sukumar et al., 1997). Mastoparan analogs
isolated from different wasp species have improved pharmacolog-
ical effects making them especially interesting for the pharmaceu-
tical industry due to their different selectivities against Bacillus
subtilis and Escherichia coli and low hemolytic activity (Cherkasov
and Jankovic, 2004; dos Santos Cabrera et al., 2008, 2011; Leite
et al., 2011). Since mastoparans have wide therapeutic applicability
and extremely low side effects, the design and synthesis of new
mastoparan derivatives are an important trend in preclinical and
clinical studies (Bartie et al., 2008; Fan et al., 2011). Unfortunately,
the application of methods by which the antimicrobial activity of
new derivatives of mastoparan is calculated without requiring the
presence of microbial membranes is necessary due to limited
knowledge about the mastoparan mechanism of action at
pathogen membranes.

Computational methods are a valuable tool in designing and
evaluating new compounds because they are fast and cost-
effective. Furthermore, they do not require complicated chemical
synthesis and testing procedures. Especially quantitative struc-
ture—activity relationships (QSAR) and quantitative structure—
property relationship (QSPR) techniques are important for drug
design since in the absence of a targeted protein X-ray structure
they are the only available methods. Therefore QSARs are a
chemoinformatic tool to predict the biological activity of potential
therapeutic agents by means of the analysis available experimental
data (García et al., 2011; Mullen et al., 2011). One of the most
important steps in building an accurate QSAR/QSPR model is the
selection of descriptors used for encoding molecules under study.
As a starting point for building a computational model, descriptors
are calculated for as many molecular attributes as possible.

However, in further model development a crucial step is the
selection of the most appropriate descriptors for predicting the
desired activity/property. Usually the selection of effective
descriptors is problem-dependent and there is no universal rule
to achieve this goal. Also, when QSAR models are built with 3D
representation of molecules and descriptors derived from them,
new problems emerge because complex softwares with high
computation time and complex computer resources are typically
used to keep into account the tridimensional structure (Avram
et al., 2012; Du et al., 2007; Cerovsky et al., 2008; Zhou et al., 2010).
Therefore, the QSAR modeling where 3D representation is
excluded is an attractive approach. For simpler molecules, the
widely used paradigm for building up a QSPR/QSAR model is the
following: Endpoint = Function (system of atoms). In the first
approximation, biochemical processes are not accompanied by the
destruction of the amino acids. Hence, these phenomena can be
expressed by the paradigm: Endpoint = Function (sequence of
amino acids). The second paradigm is a very attractive alternative
to the first paradigm for the cases of peptides and proteins, because
the representation of amino acids by symbols A, R, N, etc. is very
compact. In addition, this approach, if successful, can indicate a
particular function of an amino acid (that is an autonomic system
of atoms) in a biochemical process.

The CORAL software (Veselinovi�c et al., 2013; Achary, 2014;
Toropova and Toropov, 2014a; CORAL, 2015) gives the possibility to
carry out the calculation with a string of symbols which represent
peptide structures, using the same algorithms which have been
involved in the SMILES-based QSPR/QSAR modeling (Toropov et al.,
2012). The aim of the present study is to build QSAR models for
calculating the antibacterial activity of mastoparan analogs based

Table 1
Experimantal and calculated pMIC data for antibacterial peptides.

Split1 Split 2 Split 3 Mastoparan analogs Sequence of amino acides pMIC expr pMIC
calc
(split1)

pMIC
calc
(split2)

pMIC
calc
(split3)

TRN TRN TRN MP INWLKLGKKMMSAL 5.040 4.729 4.725 4.731
TRN TRN TRN MP-2 INWLKLGKKLLSAL 4.600 4.722 4.673 4.689
TRN TRN TRN MP-5 INWLKLGKKMMSAI 4.450 4.626 4.669 4.685
TRN TRN TRN MP-6 SNWLKLGKKMMSAL 4.390 4.520 4.489 4.465
CLB TRN TRN PDDA INWKKIFQKVKNLV 4.920 4.899 4.981 4.940
TRN TRN TRN PDDA-1 INWKKIFEKVKNLV 4.350 4.823 4.780 4.752
TRN CLB TRN PDDA-2 INWKKIFEKVKDLV 5.300 4.918 4.823 4.861
TRN TRN VLD PDDA-3 IDWKKIFEKVKNLV 5.070 4.918 4.823 4.861
TRN TRN TRN PDDA-4 IDWKKIFEKVKDLV 4.750 5.013 4.866 4.970
CLB TRN CLB PDDA-5 INWSKIFEKVKNLV 4.760 4.664 4.620 4.596
TRN VLD CLB PDDA-6 INWSSIFEKVKNLV 4.390 4.504 4.460 4.441
VLD CLB VLD PDDA-7 INWSSIFESVKNLV 4.050 4.344 4.301 4.285
CLB TRN TRN PDDA-8 INWSSIFESVSNLV 4.000 4.184 4.141 4.129
TRN CLB CLB PDDA-9 INWKKIFEKVSNLV 4.640 4.664 4.620 4.596
TRN TRN TRN PDDA-10 INWKKIFESVKNLV 5.000 4.664 4.620 4.596
TRN VLD CLB PDDA-11 INWKSIFEKVKNLV 4.820 4.664 4.620 4.596
TRN VLD TRN PDDA-12 NIWKKIFEKVKNLV 4.690 4.823 4.780 4.752
VLD CLB CLB PDDB INWLKLGKKILGAL 4.800 4.754 4.688 4.743
CLB TRN CLB PDDB-1 INWLKLGKKILGAI 4.600 4.650 4.632 4.697
TRN TRN TRN PDDB-2 INWLRLGRRILGAL 4.760 4.795 4.799 4.794
TRN CLB VLD PDDB-3 INFLKLGKKILGAL 4.640 4.651 4.571 5.032
TRN TRN TRN PDDB-4 INWKKLGKKILGAL 4.800 4.601 4.555 4.586
VLD TRN CLB PDDB-5 INSLKLGKKILGAL 4.000 4.168 3.999 4.463
VLD VLD TRN PMM INWKKIASIGKEVLKAL 4.580 4.675 4.604 4.649
CLB TRN TRN PMM-1 INWKKIASIGKEVLKAI 4.560 4.572 4.548 4.603
TRN VLD VLD PMM-6 INWKKIASIGKEVLKA 4.150 4.435 4.395 4.404
VLD VLD CLB PMM-7 INWKKIASIGKEVLK 4.000 4.179 4.172 4.191
TRN TRN TRN PMM-8 INWKKIASIGKEVL 4.000 4.092 4.095 4.103
TRN TRN TRN PMM-9 INWKKIASIGKEV 4.000 3.851 3.886 3.859
VLD TRN VLD PMM-10 IWNKIAKSIGKVLEKAL 4.460 4.675 4.604 4.649
TRN TRN TRN PMM-12 NIWKKIASIAKEVLKAL 5.000 4.868 4.839 4.830
VLD TRN TRN PMM-13 KNWKKIASIGKEVLKAL 4.220 4.626 4.527 4.538
TRN TRN TRN PMM-14 SNWKKIASIGKEVLKAL 4.520 4.466 4.368 4.383

TRN: trainig set; CLB: calibration set; VLD: validation set.
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