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Data mining our way to the next generation of thermoelectrics
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a b s t r a c t

In this article we provide an overview of data mining, informatics, and machine learning approaches for
thermoelectrics. We describe how the initial development of a thermoelectric materials database has
enabled the creation of a recommendation engine governed by machine learning and how this engine
introduces a new paradigm in thermoelectric materials development. Performance probability is gener-
ated based on training models. A demonstration of the data mining approach is set forth in a ternary
intermetallic system, where we report new materials.

� 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

High efficiency thermoelectric materials offer great potential for
the development of energy harvesting and solid-state refrigeration
devices. The field is also rich in opportunities to explore fundamen-
tal condensed matter structure–property relationships. This inter-
est has led to exponential growth in the number of articles written
each year (�104 this year!) on thermoelectrics, and yet most
experiments continue to focus on a well-known set of chemistries
and crystal structures, including chalcogenides, skutterudites, and
Zintl phases [1–3]. Occasionally an unexpected material class is
discovered fortuitously, such as NaxCoO2 derived thermoelectrics
[4].

The reason for this incremental approach is the high risk asso-
ciated with searching through chemical whitespace for entirely
new materials. Given the heavy focus on traditional, intermetallic
thermoelectrics, the development of new high-performance mate-
rials that also incorporate low-cost, abundant, and sustainable
materials may require different design principles. One possible
approach we describe here leverages the wealth of data in the field
by incorporating data mining, informatics, and machine learning in

conjunction with traditional experimental investigation to lower
the risk barrier to entry in exploring new materials and
compositions.

2. Data mining visualizations in thermoelectrics

Materials science is on the cusp of being transformed through
the use of data and materials genomics in integrated computa-
tion and materials design. Some of the challenges and potential
impact that open and accessible materials and engineering data
can have on future research have recently been detailed [5].
Experimental thermoelectric research is at times guided and
accompanied by computation. This has led to the development
of ab initio, high-throughput, computational screening techniques
[6–9]. Only recently in the field of thermoelectrics have efforts
been made to begin cataloging data in order to take advantage
of informatics and machine learning to rapidly accelerate mate-
rials discovery. For example, Gaultois et al. assembled a database
allowing simultaneous analysis of performance and resource
considerations based on materials availability and geological as
well as geopolitical supply risks [10]. This approach has served
as a model for developing data-driven approaches to other appli-
cations [11].

To maximize the dimensionality and information content, the
scatter plots employed in these works provide a third dimension
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of marker size, which indicates a performance metric (in this case
zT), and a fourth dimension of marker color, which indicates the
family of related materials (Fig. 1). By incorporating both perfor-
mance and resource considerations, a unique set of tools for
researchers and design criteria were used to outline a parameter
space of interest to guide the discovery of new thermoelectric
materials with favorable performance.

For example, it is observed that materials must have an electri-
cal resistivity below 10�2 X cm and Seebeck coefficient above
100 lV/K for any reasonable thermoelectric performance, i.e. high
zT. This dramatically restricts the design space of oxide thermo-
electric materials, which is important to guide future studies. A
few other important observations in existing thermoelectric mate-
rials include:

1. Many state-of-the-art materials including chalcogenides, skut-
terudites and Zintl phases rely on costly, scarce materials with
geological and geopolitical supply risk whereas lower perform-
ing oxides, silicides, and half-Heuslers do not.

2. The Lorenz number, L0, can be used to determine the fraction of
the total conductivity arising from electrical carriers, je=jtotal,
and this value can be multiplied by S2=L0 to yield zT for a given
material and zTmax occurs when je=jtotal ! 1

3. The properties of materials tend to cluster by material family,
rather than change drastically from regions of poor to high
performance.

4. Improving the electrical properties (i.e., power factor) is
non-trivial in even the most-studied systems (e.g., band engi-
neering, resonant-level doping, quantum wells), and unfath-
omable in many oxide systems.

Taken together, these observations provide additional thermo-
electric design criteria. A balance of moderate performance and
sustainability in materials highlights the merits of half-Heusler,
oxides and silicides. By examining the limits of zT given thermal
conductivity considerations, i.e. je=jtotal, some classes of materials,
such as some chalcogenides, are approaching the limit of zT
whereas other materials with higher Seebeck coefficients have sig-
nificant room for improvement via reducing the lattice thermal
conductivity [12]. Finally the clustering of materials from similar
families in parameter space suggests that rather than trying to
improve the performance of materials that exhibit low zT, new
materials should be sought out with better electrical properties.

3. Predicting new, high-performance materials

In the search for new materials, researchers have turned to the
development of computational methodologies to predict the

physical properties of materials. Identifying the most promising
materials using first principles level calculations is becoming more
common due to improvements in computational codes, computing
power, and the support of extensive research efforts such as the
Materials Project [13]. These advances have undoubtedly sup-
ported the development of new materials ranging from intercala-
tion batteries [14] to phosphors for solid state lighting [15].
Often the properties of these functional materials can be accurately
reproduced by electronic structure calculations, making
high-throughput screening viable for materials development. In
terms of thermoelectrics, however, the calculated figure of merit
requires a combination of electronic structure and phonon calcula-
tions to reproduce the properties necessary for materials
prediction.

While an accurate estimations of band-gaps can now be
achieved using advanced hybrid functionals, calculating transport
properties such as thermal conductivity (j) at the ab initio level
remains computationally expensive. Although classic expressions
to approximate thermal conductivity have been developed by
Slack and others, these calculations require estimations often
require the Grüneisen parameter, which is a demanding calcula-
tion even for simple crystal structures. Subsequent solutions
based on semi-classical transport theory [16,17] and first princi-
ples theory[18,19] have also proved tremendously useful to pre-
dict materials properties. However, considering the complexities
of current thermoelectric materials, the ability to use these cal-
culations in a materials screening or datamining capacity tends
to vanish.

Rather than explicitly calculating j, an alternative approach
more conducive to materials screening is to use proxies to esti-
mate thermal conduction. In this case, the minimum thermal
conductivity (jmin) in the high temperature limit is an ideal
proxy because it indicates compounds that have an inherent
potential for extremely low thermal conductivity. This
lower-limit of j provides an indication of what can be achieved
experimentally through engineered phonon scattering mecha-
nisms. jmin can be estimated following:

jmin ! 0:87kBN2=3
A

N2=3q1=6E1=2

M2=3

where, E is Young’s modulus, q is the density of the crystal
structure, and N and M are the number of atoms and molecular
mass of the unit cell [20]. The crystal structure information can
be easily determined experimentally while Young’s modulus can
be readily predicted using density functional perturbation theory
in conjunction with the Voigt–Reuss–Hill approximation to
determine the elastic moduli [21]. Modern implementations of
DFT readily allow this analysis with little post-processing, pro-
viding an efficient calculation of the minimum thermal
conductivity.

Plotting jmin calculated using the DFT-determined Youngs
modulus against the experimentally measured j for a variety
of known thermoelectric materials such as PbTe, SnTe, Mo3Te4,
TiNiZn, among others, at 300 K (Fig. 2a) in general shows posi-
tive agreement between experiment and computation even
though it is in poor agreement on an absolute scale. The j mea-
sured at 1000 K (Fig. 2b) is in much better agreement with jmin

with a majority of the calculated data points falling near the
measured values. The obvious reason for this discrepancy stems
from the jmin corresponding to the high temperature limit where
Umklapp scattering decreases the lattice thermal conductivity in
even defect-free materials. Interestingly, the thermal conductiv-
ity is still underestimated indicating that data beyond 1000 K
are necessary to achieve the high-temperature limit for many
of these compounds. Data at such high temperatures are not

Figure 1. Bird’s-eye-view plot of thermoelectric materials featuring four dimen-
sional information visualization. Reprinted with permission from [10]. Copyright
(2013) American Chemical Society.
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