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a b s t r a c t

The temperature-dependent flow behavior in nominally binary Al–Mg alloys measured recently (Jobba
et al., 2015; Niewczas et al., 2015) is interpreted in the context of a parameter-free solute strengthening
model. The recent measurements show consistently higher strengths as compared to literature data on
true binary Al–Mg alloys, which is attributed to the presence of Fe in the nominally binary Al–Mg.
Using the Fe concentration as a single fitting parameter, the model predictions for the newer materials
when treated as Al–Mg–(Fe) alloys agree with experiments to the same degree as obtained for the true
binary Al–Mg. The model then predicts the activation volume in good agreement with experimental
trends.

� 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

In interpreting experimental data for strengths of Al alloys,
multiple mechanisms operating simultaneously are often invoked
because the application of simple or ad hoc theories does not
explain observed trends. For instance, Hall–Petch effects [2],
anomalous athermal stresses [4], solute clustering [4,5], and/or
unphysical dislocation/solute interactions [6–8], have been
invoked to justify deviations between various solute strengthening
theories [9,10,6–8] and experimental data. However, such reason-
able attempts to rationalize experimental data obfuscate the rele-
vant underlying mechanisms. Here we re-examine recent data on a
set of nominally binary Al–Mg alloys first reported by Jobba et al.
[1] and then further analyzed by Niewczas et al. [2]. We show that
the finite-temperature flow behavior of the alloys in these works
can be explained by the inclusion of a low concentration of Fe
without the need to invoke any other additional mechanisms.

The solute strengthening model was developed in Refs. [11,12]
and only key points are summarized here. When moving through a
random field of solutes with concentration c, an initially straight
dislocation can lower its energy by bowing into regions containing
favorable solute configurations and bowing away from regions
with unfavorable solute configurations. The segments thus reside
in favorable solute configurations and require stress- and
thermally-driven activation to escape and move to the next favor-
able environment. The characteristic energy barrier DEb for pinned
segments is
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where C is the line tension of the dislocation and b is the Burgers

vector magnitude. The quantity DeEpðwcÞ is related to the standard
deviation of the overall solute/dislocation interactions as the dislo-
cation segment moves a distance wc through the random solute
field of concentration c, and wc is the characteristic roughening
amplitude emerging from the theory. The characteristic stress
required to move the dislocation segment over the energy barrier
at zero temperature is
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If wc is the same for different solutes, then the energy barrier
and zero temperature flow stress for the alloy with q different
solute types in solution is
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where the superscript q is a quantity for solute q. For Al,wc is nearly
independent of solute type and so Eq. (3) can be applied to binary
Al–Mg and nominally binary Al–Mg–(Fe) [12].

All quantities in Eqs. (1) and (2) are derived or material proper-
ties. First-principles calculations provide the key solute/dislocation
interaction energies needed in the theory. The coefficients
of the concentration scaling for the energy barrier and
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zero-temperature yield stress in Eqs. (1) and (2) are shown in
Table 1 for Mg and Mn. In these results, the dislocation line tension
C for Al is taken as 0.25 eV/Å, as derived from atomistic studies
[13]; this value is lower than used in Ref. [12] but the same as that
used in Ref. [11]. Also shown are the coefficients for Fe, which
cannot be predicted by the theory and are instead obtained from
experimental flow stress measurements on binary Al–Fe by Diak
and Saimoto [14].

At finite temperatures, dislocation motion is thermally acti-
vated. At high stresses/low temperatures, the stress-dependent
energy barrier DE sð Þ is

DE sð Þ ¼ DEb 1� s
sy0

� �3=2
ð4Þ

At low stress or high temperatures, the energy barrier scales loga-
rithmically with the applied stress [8,15],

DE sð Þ ¼ 0:51DEb ln
sy0
s

� �
: ð5Þ

At quasistatic loading rates, transition state theory [16,17] then
connects the energy barrier DE sð Þ to the strain rate _� and tempera-
ture T as

_� s; Tð Þ ¼ _�� exp �DE sð Þ
kT

� 	
; ð6Þ

where k is the Boltzmann constant, _�� ¼ qbdm�;q is the dislocation
density per unit area, d is the flight distance over which the disloca-
tion moves after each escape and m� is the attempt frequency. Eq. (6)
can be inverted to yield the finite temperature flow stress sy for a
given strain rate _� as

sy _�; Tð Þ ¼
sy0 1� kT
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The high and low stress (or low and high temperature) expressions
above agree very well over the intermediate range of stress
0:3 < s=sy < 0:6 [12]. Here, as in all previous applications of this

solute strengthening model, we use _�� ¼ 104 s�1 [12,15,18]; the pre-
cise value has a small effect on the predictions.

A measurable quantity of importance in thermally-activated
flow is the apparent activation volume V _�; sð Þ, defined as

V _�; Tð Þ ¼ � @DE sð Þ
@s

: ð9Þ

The activation volume is related to the area swept by the dislocation
during the thermal activation process, and so is a sensitive measure
of the length scales involved in the actual activation process. In the
low-temperature regime,
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and the theory satisfies the ‘‘stress equivalency principle” [19].

We first demonstrate the quantitative predictions of the model
by comparing to measured flow stresses in Al–Mg and Al–Mn bin-
ary alloys [14,5,20,21]. Diak et al. have verified negligible concen-
trations of other elements, and in particular the Fe concentrations
are below 3 ppm [14]. The single-crystals Al–Mgmaterials of Asada
et al. were fabricated from 99.999% and so are also expected to
have negligible Fe. The critically resolved yield stresses of single
crystal Al alloys containing 1:1% and 3:3% Mg were measured by
Asada et al. at a strain rate _� ¼ 4:2� 10�4 s�1 and various temper-
atures; we consider measurements between 78 K and 300 K to
avoid other high-T phenomena (e.g. dynamic strain aging [3] and
solute drag [22–24]). Diak et al. measured the flow stresses ry in
uniaxial tension of two polycrystalline binary Al–Mg alloys at
78 K [14,5] and of three binary Al–Mn alloys at 78–263 K [21], with
_� ¼ 5� 10�5 s�1. In making predictions, we convert critical
resolved shear stresses sy to equivalent uniaxial yield stresses ry

by multiplying sy by the Taylor factor M ¼ 3:06 [25] to put all
results on the same footing.

The experimentally-measured yield stresses are shown versus
the predicted yield stresses in Fig. 1(a) for the temperature range
78 K–300 K. The model predictions agree well with experiments
for the polycrystalline materials, and show a moderate overpredic-
tion for the single-crystal materials at lower temperatures. All pre-
dictions are within 30% with most predictions being within 15%.
The deviations suggest that the model might overestimate the zero
temperature yield stress sy0 while underestimating the energy bar-
rier DEb. However, the model’s parameters were derived from first-
principles and are not adjustable. The polycrystalline results differ
from earlier results [12] due to the use of the line tension derived
from atomistic simulations [13], and this value of C actually makes
the predictions slightly worse relative to the experiments.

In more recent studies, Jobba et al. have measured the yield
stress of various Al–Mg alloys with concentrations ranging from
0.5% to 4.11% at 4 K, 78 K and 298 K at a strain rate
_� ¼ 1:6� 10�4 [1,2]. We make comparisons between theory and
experiments at 78 K and 298 K since dynamic effects occur at tem-
peratures near 0 K [16]. These measured yield stresses are much
larger than those found by Diak et al. or Asada et al. Similarly,
the measured yield stresses are generally larger than those pre-
dicted by the model, especially when sy is small, as seen in Fig. 1
(b). Jobba et al. also report rather high yield stresses for nominally
pure Al (� 12–18 MPa). The larger strengths measured by Jobba
et al. and Niewaczs et al. would be inconsistent with a reduction
in Mg in solution relative to the measured overall content, so here
we use the stated Mg content as equal to the Mg concentration in
solution. The similarity in measured strength between the � 3%
Mg alloy and � 4% Mg alloy suggests, however, that the Mg in
solution in the � 4% Mg alloy could in fact be closer to � 3%.
The discrepancy between the previous literature results, which
agree reasonably with the theory, and those reported in Refs.
[2,1], which are rather larger, can be rationlized by the presence
of dilute Fe solutes in the nominal binary Al–Mg alloys of Jobba
et al. They reported that the as-fabricated alloys contain
� 6� 10�4 Fe solute, of which an unknown amount is in solid solu-
tion. Here, we assume that there is some common concentration
cFe of Fe in all of the materials studied by Jobba et al. and use cFe
as a single fitting parameter for the yield stress.

For alloys containing both Mg and Fe solutes, the 0 K yield stress

seffy0 and energy barrier DEeff
b are obtained from the alloy law of

Eq. (3). We obtain cFe by minimizing the total relative difference
between theory and experiment given by over all experimental
data points at both 78 K and 298 K. This yields an Fe concentration
of cFe of 20 ppm and predictions of the model using this cFe for all
the Al–Mg–(Fe) alloys are shown in Fig. 1(c). The fitted value of

Table 1
Computed T ¼ 0 yield stress sy0 and energy barrier DEb for Mg, Mn, and Fe solutes in
Al, normalized by the appropriate solute concentration factor. Parameters in bold for
Fe solutes are back-calculated from experimental data [14]. Note that these
parameters differ from Ref. [12] due to the use of a more accurate line tension.

Solute sy0=c2=3 (MPa) DEb=c1=3 (eV)

Mg 427 3.25
Mn 807 6.62
Fe 15,047 25.34
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