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a b s t r a c t

The strength of most metals scales with either an internal or external length scale. Motivated by the wide
applicability of this phenomenon to material type and microstructure, we develop a model which gives
quantitative insight into the scaling exponent using the known universal properties of a dislocation net-
work and the leading order stress dependence of an underlying critical stress distribution. The approach
is found to be equally valid for both Hall–Petch strengthening and the smaller-is-stronger paradigm of
small scale plasticity.

� 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

One of the scientifically most studied problems in the field of
strength of crystalline materials is strengthening via grain
size-reduction. This was experimentally demonstrated in the
1950s by both Hall [1] and Petch [2] for mild steel, ingot iron, spec-
trographic iron, as well as Zn. The stress, r, at which strength is
measured scales for all of these polycrystalline metals as
r ¼ r0 þ kd�n, where r0 is some base resistance of the constituting
single crystal, d is the grain size, and k is commonly referred to as
the Hall–Petch constant. The Hall–Petch exponent, n, is typically
’ 0:5. This empirical and technologically relevant scaling between
strength and grain size appears simple, but has remained a funda-
mental challenge in metal physics. In fact, numerous mechanistic
models have been proposed (dislocation pile-up, work hardening,
composite models, etc., see Ref. [3] and references therein) to
explain this scaling.

The persistence of the power-law scaling above a certain critical
size d is well reflected by the fact that not only very different
microstructures (well annealed versus heavily cold rolled Ni, well
annealed Fe, pearlitic steel, martensitic steel, tempered steel, etc.)
obey Hall–Petch strengthening, but so do also fundamentally dif-
ferent parameters such as the yield strength, the lower yield point,
the maximum flow strength, and the hardness or (see Petch [2])
the cleavage strength at �198 �C. Since the range of microstruc-
tures covers everything between low defect densities in large pure
crystallites, and immensely complex hierarchical defect structures

of advanced steels that include precipitates, carbides, various types
of phases, grain and dislocation boundaries, lathe pockets and dis-
location density gradients, it urges the question if any single mech-
anistic picture can be held responsible for this phenomenon?.

A power-law strengthening with respect to a micro structural
length scale is also seen in dynamic recrystallization [4] and recov-
ery [5]. Indeed, for the case of recrystallization, Derby [4] has
demonstrated power law scaling for a wide range of materials
including different grades of steels, Cu, Ni, Mg, Fe, FeS, and also
the non-metals NaCl, NaNO3, olivine and ice, with the exponent n
ranging between 0.5 and 0.8. This has also been shown for ultra
fine grade metals with approximately 100 < d < 3000 nm tested
between �196�C and 720 �C [6]. A third prominent example of
power-law scaling is the ‘‘smaller is stronger’’ paradigm of
micron- and nano-sized single crystals [7,8]. For this extrinsic size
effect, where d characterizes an external length scale, n typically
covers values between 0.2 and 0.7, and is for example found to
depend on the initial dislocation density [9].

The above motivates Fig. 1, which summarizes literature data
for Hall–Petch strengthening [1,2], dynamic recrystallization [4],
and size-affected strength (see for example Ref. [10] and references
therein). Fig. 1 demonstrates the remarkable fact that strength fol-
lows a similar power law with respect to both intrinsic (internal)
and extrinsic (external) length scales for a vast range of materials
and microstructure.

In this letter we extend previous work [10] rationalising the
‘‘smaller is stronger’’ paradigm as a general statistical sampling
effect, to the much broader phenomenon of grain size strengthen-
ing and the Hall–Petch relation. The approach requires no specific
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mechanism (although none is discounted) and originates from only
a knowledge that a dislocation network exhibits scale-free behav-
ior and that the extreme value statistics of a critical stress distribu-
tion is at play. By doing so, it is found that grain size strengthening,
vis á vis the Hall–Petch mechanism, and the ‘‘smaller is stronger’’
paradigm, can be rationalized based on the same approach. This
result also gives quantitative insight into the extent to which the
scaling in strength is a truly universal phenomenon.

Ref. [10] demonstrated that two quite different statistical
effects contribute to the size effect in small scale plasticity, one
occurring in stress and one in plastic strain. In what follows, only
leading order algebraic trends are considered, an approach entirely
compatible with the notion that logarithmic accuracy is sufficient
for the emergence and identification of the size effect phenomenon
in data-sets such as that shown in fig. 1. The general approach
taken begins with the construct that a typical deformation
sequence admits M discrete plastic events and that the stress and
plastic strain value of each is sampled independently from a distri-
bution of critical stresses and a distribution of plastic strain magni-
tudes. The current work then deals with the average with respect
to many realizations of the deformation sequence, where in the
case of the critical stress distribution the average ascending order
is important and is determined via extreme-value-statistics. For
the plastic strain sequence the order is assumed not to be so
important and the average results in M plastic strains all scaling
with the mean of the plastic strain magnitude distribution. For
the micro-plastic regime of deformation such a simplified picture
should capture the leading order dependencies of the average
stress–strain curve.

For the stress scaling, the internal dislocation network is char-
acterized by a positive valued distribution, PðrÞ, of critical stresses.
Each such critical stress is the stress required for an irreversible
rearrangement of the dislocation network and thus a plastic event.
Such a plastic event is typical of intermittent plasticity and is gen-
erally referred to as a dislocation avalanche, which my be charac-
terized in terms of the plastic strain it admits and the energy it
releases [11–13]. Here only the former, plastic strain, will be

considered. For a given elemental volume, L3, there exists
M ¼ qL3 such critical stresses (q being the density of the available
critical stresses). Sampling the distribution M times gives a
sequence of critical stresses, the smallest of which play the domi-
nant role in initiating the transition to plastic flow. If M is large
then the statistics of the extreme controls these relevant critical
stresses, whereas if M is small then the statistics of the most prob-
able becomes relevant. This rather general description naturally
results in a shift to higher critical stresses when volume (and
therefore M) decreases.

For sufficiently large M (M > 100), the apparatus of extreme
value statistics defines the characteristic ith critical stress, ri, of
the ordered sequence via [10]

i ¼ M
Z ri

0
drP½r�: ð1Þ

The above is a generalization of the well known i ¼ 1 case of the
average minimum value of a sampled ordered sequence of size M
[14]. For the small-stress regime, P½r� � ra, and Eq. (1) leads to

ri � ði=MÞ1=ð1þaÞ � ði=L3Þ1=ð1þaÞ
. Thus, as the volume reduces the

stress scale increases. Apart from a, this result is independent of
the overall form of the positive valued distribution.

For strain scaling, the universal finite-size scaling properties of
a dislocation network in a state of criticality is exploited [11]. In
particular, like that of earth quakes, avalanche sizes and crackling
noise (see for example Refs. [12,13]), the distribution of strain
magnitudes, de, associated with intermittent plasticity follows a
power-law form with a non-algebraic scaling function (prefactor),
f ½��. Here f ½�� depends on a length scale which in Ref. [10] character-
ized the sample volume. That is, P½de� � f ½de=demaxðLÞ�de�s where s
is a universal scaling exponent for intermittent plastic strain activ-
ity [11,15] and demaxðLÞ varies inversely with L [15,16]. Thus the
plastic strain magnitude scale will be characterized by some func-
tion of L. Using a well-accepted representation of the scaling func-
tion [10], this characteristic scaling is found to be dei � Ls�2, which
gives the simple scaling of total plastic strain at the ith plastic

event as ei � iLs�2. We note that the prefactor of this relation
depends on both the minimum plastic strain and demaxðLÞ, however
the resulting non-algebraic dependence on L does not affect the
leading order algebraic contribution to the size effect.

When put together, ri � ði=L3Þ1=ð1þaÞ � ðdeiL
2�s=L3Þ1=ð1þaÞ

, and
the critical stress at a fixed plastic strain is found to scale as
L�ðsþ1Þ=ðaþ1Þ giving a size effect exponent of n ¼ ðsþ 1Þ=ðaþ 1Þ. A
more extended derivation of this result may be found in Ref. [10]
and recent experimental verification of some aspects of this predic-
tion may be found in Ref. [17].

The above approach can be generalized to a polycrystalline
material in a straight forward manner by considering an ensemble

of grains, whose characteristic volume is defined as L3
grain ¼ d3. This

also defines Mgrain ¼ qL3
grain. The critical stresses available to the

bulk material are described by a single effective distribution where
the total number of critical stresses available is given by
Mbulk ¼ qL3

bulk. Eq. (1) then gives the ith average critical stress of

the bulk polycrystalline system as ri � ði=MbulkÞ1=ð1þaÞ.
To see how a single effective distribution of critical stresses may

represent the extreme value statistics of critical stresses of a poly-
crystalline environment, Eq. (1) is generalized to

i ¼
X

n2grains

Mn

Z ri

0
drPn½r�; ð2Þ

where the nth grain is characterized by its own critical stress distri-
bution Pn½r� and Mn. Pn½r� is expected to depend on grain shape, the
local grain network structure and also grain orientation with

Fig. 1. Log–Log plot of strength versus an internal or external length scale for a
wide range of literature data for both small scale plasticity and grain size data,
including the original data from both Hall and Petch. Following Derby [4], the shear-
strength versus length scale data is plotted in the respective units of an appropriate
shear modulus and Burgers vector magnitude.
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