Scripta Materialia 109 (2015) 52-55

journal homepage: www.elsevier.com/locate/scriptamat

Contents lists available at ScienceDirect

Scripta Materialia

=
Scripta MATERIALIA

von Neumann-Mullins-type evolution equations for triple and
quadruple junction controlled grain growth

Peter Streitenberger *, Dana Zollner

@ CrossMark

Institute for Experimental Physics, Otto von Guericke University Magdeburg, Universitdtsplatz 2, 39106 Magdeburg, Germany

ARTICLE INFO ABSTRACT

Article history:

Received 20 May 2015
Revised 9 July 2015
Accepted 14 July 2015
Available online 18 July 2015

Keywords:

Grain growth

Nanocrystalline material
Junction control

von Neumann-Mullins-relation

The classical von Neumann-Mullins-law relates the area change rate of a grain in a two-dimensional
polycrystalline microstructure to the number of neighboring grains yielding the well-known
“N-6"-rule. In the present paper, we show that similar relations exist for the rate of size change as a
function of number of neighboring grains for two- and three-dimensional polycrystalline grain
microstructures under triple junction- and quadruple junction-control, which we find to be in very good
agreement with simulation results.

© 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Grain growth is generally based on the fact that polycrystalline
materials are thermodynamically unstable. They undergo continu-
ous coarsening driven by a reduction of the total Gibbs free energy
of the system, where it is conventionally assumed that only the
grain boundaries contribute to the reduction via the decrease of
the total grain boundary area. In particular, for the simplest case
of normal grain growth it follows that only two characteristic
parameters enter the theory: namely the specific energy and
mobility of the grain boundaries. As a result grain growth in poly-
crystalline materials always occurs due to the fact that individual
grains either grow or shrink, and in case they do shrink they will
surely vanish at some point reducing the total number of grains.
This relaxation process takes place under geometrical and topolog-
ical constraints of the grain network consisting of grain boundary
faces, triple lines and quadruple points.

The fundamental relation between the rate of size change and
the number of sides of two-dimensional soap froth derived by
von Neumann in the 1950s [1]| had been applied by Mullins to
polycrystalline grain microstructures under normal grain growth
in two dimensions [2] yielding what is known today as the classical
von Neumann-Mullins-law,

A I T
A = gy, (21— N) = Mgy 3 (N 6), (1)

where the area of a polygonal grain is given by A and the number of

sides or neighbors of that grain and the number of triple points,
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respectively, is given by N. The parameter my;, describes the grain
boundary mobility and 7g, the grain boundary surface tension. In
particular, all grain boundaries are characterized by a unique value
for the surface tension as well as by the same mobility in agreement
with the uniform boundary model. It follows from Eq. (1) that all
grains with more than six sides will grow and grains with less than
six will shrink making six the critical number of neighboring grains
N, at which a grain will neither shrink nor grow. In particular, the
von Neumann-Mullins-law holds for self-similar grain growth
whenever the average grain area of the ensemble increases linearly
with time, i.e., under normal grain growth.

Over the years, the von Neumann-Mullins-law has been veri-
fied for normal two-dimensional grain growth by experiments,
theoretical considerations, and computer simulations (e.g., [3-5]).
But also the effect of an additional driving force for grain growth
on this relation has been considered for example in the works of
Molodov et al. [6], where the drag effect of a magnetic field on
microstructure evolution in non-ferromagnetic materials has been
analyzed. However, especially in the last decade investigations of
the influence of junction drag on grain growth Kkinetics have
become increasingly important. Triple junction drag is the number
one explanation for thermal stability of nanocrystalline materials
(see overview [7]). While there is intense activity in this field of
research regarding the production as well as the mechanical prop-
erties of nanocrystalline materials, statements regarding the grain
microstructural changes during coarsening are generally limited.
Nevertheless, two working groups have investigated this problem
carefully.
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Gottstein and Shvindlerman [8] analyzed the influence of triple
junction dragging on the von Neumann-Mullins-relation based on
the idea that in nanocrystalline and ultra-fine grained materials
the influence of triple points of a 2D grain network is
non-negligible considering that the triple point mobility is differ-
ent from that of the adjoining boundaries (see also [9]). As a result
they derived among others two separate functions for the rate of
area change for grains with few (N < 6) and many (N > 6) sides.
In addition to N, the area change rate depends also on the dihedral
angle at the triple junction, which in turn depends strongly on the
ratio of the mobilities of grain boundaries mg;, and triple junctions
my; (compare also [10-12]). Also Barrales-Mora et al. [13] have
shown that the effect of a limited mobility of triple lines on the
volume rate of change can be implemented in 3D grain growth
theories based on the average N-hedra approach introduced by
Glicksman [14]. Based on the latter concept of average N-hedra
Rios and Glicksman [15] considered in a very recent paper also
the effect of grain boundary junctions in 3D.

The present authors [16] investigated for the case of pure triple
junction drag the influence of finite triple junction mobilities on
metrical and topological properties of a 2D grain network. We
derived a self-similar expression of the grain size distribution as
well as of the rate of size change showing that under pure triple
junction drag the radius change rate depends uniquely only on N.
The analytic results are found to compare very well with results
from modified Monte Carlo Potts model simulations done by
Zollner and Rios [17].

In the present paper we show that the evolution equation of von
Neumann-Mullins-type for 2D triple junction limited grain growth
as it has been derived in [16],

N — N
=, )

is of more general validity than it is suggested by the linear Ansatz
for the topological function N = N(x) that has been used in [16]. The
topological function N(x) describes the relation between the num-
ber of neighboring grains N and the relative grain size x = R/(R),
where R is the grain radius, R its rate of size change, and (R) the
ensemble average. o is a numerical factor explained in [16]. In gen-
eral, N(x) can be approximated by a quadratic polynomial [18]
N(x) = co%* + c1x + ¢y, where for two-dimensional triple-junction
drag dominated grain growth as described by Eq. (2) c; =0 [16].

In the following, similar forms of the evolution equation are
presented for the cases of triple and quadruple junction limited
grain growth in 3D polycrystals as they have been considered by
the authors in [18].

An effective polygonal or polyhedral grain in a two- or
three-dimensional polycrystal, respectively, can be described by
an evolution equation according to Refs. [16,18]

. R
RR = Mgy, (R—C — 1), (3)

where the driving force is the reduction of the total grain boundary
energy yg, and the critical grain size R. is defined through

R(R=R.) = 0. For a two-dimensional system RR is related to the

grain area change rate A =27RR, and for a three-dimensional

system to rate V23 =

(2/3)(487*)"RR. The effective mobility my; for a two-

dimensional polycrystal is given by [16]
mgb

1+ Mgy N’

3nmg R

R = myjy,,3mor

the affine grain volume change
1/3

(4)

mejf =

where myg;, and my; are the finite mobilities of the grain boundaries
and triple points, respectively. For a three-dimensional polycrystal
the effective mobility is given by

Mof = N N2’ )

where m; and mg; are the mobilities of triple lines and quadruple
points of a grain in by a polyhedral network (cf., Eq. (4) in [18]).
When the effective mobility m.g in Eq. (3) is replaced by the grain
boundary mobility mg, and the critical grain size R. is considered
as grain size independent, R.=R/(t), Eq. (3) corresponds to
Hillert’s approximation for normal grain growth [19]. However,
even for normal grain growth R. does depend also on the size of
the considered grain, that is R. = R(t,R), reflecting a local spatial
grain size correlation, which has been analyzed in [20,21] (see also
[22-24]). As we will show in the following, this spatial grain size
correlation can be expressed by the geometrical requirement for
connectivity leading to a von Neumann-Mullins like representation
of the various types of junction drag controlled grain growth.

Assuming that in a D-dimensional polycrystal a grain of size R is
surrounded by N average N.-hedra of equal size R. each of which in
turn has N, neighbors. Connectivity of the polyhedral network
(cf., e.g., [25,26]) requires that the considered grain of size R is
connected with each of the surrounding average N.-hedra of size
R. along a mutual shared grain boundary face, which for a given
vertex-to-vertex distance a (cf., e.g., Fig. 1 in [18]) has a size in
order of Ap=xaP!, where x is a dimensionless shape factor.
Since the total surface areas Sp and S;, of the considered N-sided
grain and the adjacent average N.-sided grain, respectively, scale
with their grain size as Sp o R°~! and, S5, < R?!, respectively, the
area Ap of their mutual shared boundary face is given by
Ap o« R°"'/N = RP'/N,. Consequently,

R Not
R. =T ®)
C N?fl
Inserting this relation into Eq. (3) yields the general expression
L M) 1
RR = "7 (o ), )
NET

describing the curvature term of the driving force purely by the
number of faces N and a critical number of faces N.. Although the
reasoning, which leads to Eq. (6), is valid only for sufficiently large
N, we show in the following that Eq. (7) represents a very good
approximation not only for large but also for small values of N.

The quasi-stationary self-similar state of grain growth is charac-
terized by separability of the evolution equation, that is
R = (R)(t) - G(x), where G(x) is a dimensionless growth law that
depends solely on the relative grain size x=R/(R) [19-23]. This
implies also that N is only a function of the relative grain size, that
is N=N(x), and only one of the mobilities in Eqs. (4) and (5) can
take a finite value while the remaining mobilities must tend to
infinity [16,18].

In the case of two-dimensional grain growth, D=2, Eq. (7)
reduces for normal grain growth, mg, < my, to the well-known
von Neumann-Mullins-expression:

RR =20 () (8)
N
as shown to be valid by Monte Carlo Potts model simulations of nor-
mal grain growth for individual grains embedded in a constant sur-
rounding (Fig. 1a, cf, also [17]) as well as for polycrystalline
microstructures (Fig. 1b).

For triple junction limited grain growth, that is in case
my; < Mgy, it follows:

s 3nmff)}gb N—-N,
RN o
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