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Emission of lattice dislocations from grain boundaries (GBs) specified by deformation-distorted structures with periodic
fluctuations of misorientation in deformed ultrafine-grained (UFG) materials is theoretically described. It is theoretically revealed
that (i) the dislocation emission from deformation-distorted GBs is significantly enhanced as compared to that from structurally
equilibrated GBs; and (ii) the enhancement effect depends on the parameters specifying the deformation-distorted GBs. The

influence of deformation-distorted GBs as dislocation sources on the tensile ductility of UFG materials is discussed.
© 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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Ultrafine-grained (UFG) materials, which exhi-
bit unique mechanical and functional properties, have
been the subject of intense research efforts motivated
by their wide range of applications (e.g. [1-10]). For in-
stance, UFG materials often have very high strength,
which is attractive for a range of structural applications
[1-6]. In addition, although strong UFG materials at
ambient temperatures typically exhibit disappointingly
low tensile ductility, there are several examples of such
materials which show simultaneously high strength
and good ductility (e.g. [11-14]). UFG materials pos-
sessing this combination of the mechanical characteris-
tics represent “ideal materials” for many technologies.

The outstanding mechanical properties of UFG
materials are crucially influenced by their specific struc-
tural features (UFG structure, deformation-distorted
GBs, etc.) responsible for the specific features of lattice
slip in these materials. Hence, it is experimentally well
documented (see Refs. [6,11] and references therein) that
grain boundaries (GBs) in UFG materials play a critical
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role in their plastic flow, which effectively occurs
through emission of lattice dislocations from GBs,
non-stop dislocation slip in grain interiors and conse-
quent dislocation trapping at GBs. In doing so, GBs
serve as dominant sources and sinks for lattice disloca-
tions in UFG materials. This is in contrast to conven-
tional coarse-grained metals and alloys where lattice
dislocations are generated and accumulated mostly in
grain interiors, but not at GBs. In the context discussed,
there is great interest in understanding the physical nat-
ure of the specific role of GBs as effective dislocation
sources in UFG materials, in contrast to coarse-grained
polycrystals.

In general, since GBs in UFG materials produced by
severe plastic deformation (SPD) methods typically have
deformation-distorted structures, which by definition
contain high-density ensembles of extrinsic dislocations
trapped at GBs [1,15,16], it is logical to expect that such
deformation-distorted structures strongly influence the
ability of GBs to emit dislocations. However, very few
theoretical examinations focussing on the dislocation
emission process (critically important for the deforma-
tion behavior of UFG materials) have been reported.
In fact, dislocation emission from GBs in UFG and
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nanocrystalline solids with fines grains was described as
the emission of dislocations from either equilibrium tilt
GBs (that have constant misorientation parameters
along their planes) [17-20] or locally distorted GBs (that
contain extra dislocations with the same Burgers vectors
and are characterized by local changes in GB misorien-
tation parameters) [21-24]. At the same time, all these
models [17-24] are questionable in the case of UFG
materials.

Let us consider lattice dislocation emission from
deformation-distorted GBs in a bulk nanostructured so-
lid under a mechanical load. The solid consists of ultra-
fine grains divided by GBs. For simplicity and
definiteness, hereinafter we will examine the lattice dislo-
cation emission from low-angle tilt boundaries com-
posed of lattice edge dislocations in this solid. The
results of our theoretical analysis can be extended to
the more general situation with high-angle GBs.

Within our model, we consider deformation-distorted
GBs as those containing both “equilibrium” and “non-
equilibrium” edge dislocations (Fig. 1). The equilibrium
dislocations of each deformation-distorted GB have
Burgers vectors b and are arranged in a regular wall con-
figuration (Fig. la) providing a constant contribution 6
to the GB tilt misorientation. The angle 0 is related to
the period p of the wall of dislocations and their Burgers
vector magnitude b as 0 = b/p [25].

The non-equilibrium dislocation array of a deforma-
tion-distorted GB provides fluctuations of the GB tilt
misorientation along the GB (Fig. 1b,c). We consider
non-equilibrium dislocations as periodically arranged
perfect edge dislocations having positive and negative
Burgers vectors b and -b, respectively (Fig. 1b,c). For
simplicity, we assume that the non-equilibrium disloca-
tions of a GB form a periodic structure consisting of fi-
nite dislocation walls with alternating orientations of
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Figure 1. Dislocation structures of deformation-distorted grain
boundaries. (a) Equilibrium dislocations belonging to a deformation-
distorted grain boundary. They represent perfect edge dislocations that
form a wall configuration terminated by triple junctions. (b,c)
Configurations of non-equilibrium dislocations in a deformation-
distorted grain boundary. (d,e) Emission of non-equilibrium disloca-
tions from a grain boundary. (d) The emitted non-equilibrium
dislocation has the same sign as the equilibrium dislocations. (e) The
sign of the emitted non-equilibrium dislocation is opposite to that of
the equilibrium dislocations.

dislocation Burgers vectors (Fig. 1b,c). So, the non-equi-
librium dislocation structure consists of segments, each
containing M dislocations, and dislocations signs within
one segments are the same, while dislocation signs in
neighboring segments are different (Fig. 1b,c). The total
number of non-equilibrium dislocations in the GB is
2MN;, where N, is a positive integer. The sum Burgers
vector of all the non-equilibrium dislocations of the
GB is equal to zero, and the GB tilt misorientation peri-
odically fluctuates around its mean value 6 determined
by the equilibrium dislocations (Fig. 1d,e).

Thus, our model describes the GBs with deformation-
distorted structures which contain extra dislocations
with various Burgers vectors and are specified by “glob-
ally” fluctuating misorientation parameters (Fig. 1d,e).
Let us calculate within our model the critical (minimum)
stress for dislocation emission from a deformation-dis-
torted GB. To do so, for definiteness, we examine the
emission of non-equilibrium dislocations (Fig. 1d,e).

Let us consider a GB containing both equilibrium
and non-equilibrium dislocations (Fig. le). We intro-
duce a Cartesian coordinate system (x, y) with the origin
at the center of the GB (Fig. le). Let the number of equi-
librium dislocations be 2N + 1. Then the component o7
of the total stress field created by the equilibrium dislo-
cations with the Burgers vectors —b (Fig. le) is calcu-
lated using, in particular, the expression for the stress
fields of individual dislocations [26] in an isotropic infi-
nite solid. Our analysis shows that the stress ¢ created
by the nearest dislocation wall (at a distance of the order
of several periods of the dislocation wall or smaller) de-
pends on N very weakly, and even for N =2 it practi-
cally coincides with the stress field created in the
limiting case of N — oo (see Supplementary Material
(Sec. A)). Therefore, hereinafter, we will consider this
limiting case. In doing so, we find: ¢%¢ = —Dwxg(%,y),
where D = G/[2n(1 —v)], G is the shear modulus, v is
the Poisson’s ratio, X = x/p, y = y/p, and:

27*(cos(2my) cosh(2mx) — 1)
(cos(2my) — cosh(2nx))*

Now let us calculate the stress ¢7% created by non-
equilibrium dislocations. This stress is calculated by
the summation of the stresses created by individual dis-
locations with the Burgers vectors b and —b in an isotro-
pic infinite solid. Our analysis shows that the stress o7
depends very weakly on the parameter N, characterlzmg
the number 2M(2N, + 1) of non-equilibrium disloca-
tions in the wall (see Supplementary Material, Sec. B).
Therefore, we employ the expression for the stress a7
for the limiting case of N; — oo. As a result, we find:
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where w = b/p, B =plh, s = 2k — D/(AM), f(x,y,s:) =
g(x,y —sx) — g(x, ¥+ s¢), and y = yq is the coordinate of
a non-equilibrium dislocation having a neighboring
non-equilibrium dislocation of opposite sign. (In
Fig. le, such a dislocation is labeled by m = 1.)

Let us consider the emission of a non-equilibrium
dislocation with the Burgers vector b from the GB in

g(xvy) =

(1)
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