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We introduce a simplification to the previously demonstrated hybrid Potts–phase field (hPPF), which relates interfacial energies
to microstructural sharp interfaces. The model defines interfacial energy by a Potts-like discrete interface approach of counting
unlike neighbors, which we use to compute local curvature. The model is compared to the hPPF by studying interfacial character-
istics and grain growth behavior. The two models give virtually identical results, while the new model allows the simulator more
direct control of interfacial energy.
Published by Elsevier Ltd. on behalf of Acta Materialia Inc.
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Many microstructural evolution processes have
been simulated by the Cahn–Hilliard (CH) equation
based on the phase field model. The Cahn–Hilliard
equation was originally developed to model spinodal
decomposition [1] of glass with interfacial energy intro-
duced by a gradient in the composition of the glass.
Since then, many have adapted this to simulate a wide
range of microstructural evolution mechanisms, with
“order parameters” introduced by Khachaturyan [2] to
represent many other materials characteristics, such as
grains and precipitates, with gradients in the parameters
representing interfaces. Recently, Homer et al. [3–5]
introduced a hybrid Potts–phase field (hPPF) model,
which uses both the CH smoothly varying interfacial
energy and the Potts sharp interfacial energy terms to
calculate the interfacial energy. In this work, we show
that the CH–interfacial energy term can be eliminated;
we can determine the interfacial energy of sharp inter-
faces between discrete particle and the bulk free energy
by the compositional field. We will compare our results
to those of the hPPF model, which has been extensively
studied. The benefit of such a model is that it affords
direct control over the thermodynamics of interfaces.

These interfaces between microstructural features are
sharp interfaces with the associated interfacial energy,
cS, and the bulk energy is a function of phase and
composition.

Several types of computational techniques have been
used to model the evolution of microstructures, e.g.
Potts Monte Carlo (PMC) and phase field (PF) models.
The former uses a discretized ensemble of particles,
while the latter uses continuum fields, or order parame-
ters, to define the microstructure. PMC has sharp inter-
faces with discretized curvature where digitized
microstructural features are used to calculate the interfa-
cial energies. In contrast, PF models use the CH equa-
tion [1,6–8], where the interfacial energy is a function
of the gradients in the continuous fields. While these
models have been extensively used for different types
of microstructural evolution, both have intrinsic draw-
backs. The PMC model struggles to simulate smoothly
varying continuous fields, like concentrations, while
the PF model requires a large set of coupled partial dif-
ferential equations with meshes sufficiently refined to
accurately capture diffuse interface evolution. These
issues can easily become prohibitively computationally
expensive. Therefore, Homer et al. developed the hPPF
model, which enables efficient and accurate simulation
of microstructural evolution, where microstructures
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are characterized by both continuous fields and discrete
particles, and the total interfacial energy is the sum of
both CH and the PMC interfacial energies. We show
that the hPPF can be further simplified to only consider
the PMC interfacial energy.

Our model runs in a digitized voxelated mesh with a
continuum concentration field overlaid on it. The voxels
are populated by an ensemble representing the different
microstructural features. The microstructure is repre-
sented by a set of discrete fields, grain id (s) and phase
(q), and a continuum field, concentration (C). The con-
centration, C 2 R : 0 6 C 6 1, defines the fraction of
component B at a point in the continuum field. The
grain id and phase are integer discrete values that denote
the membership of that voxel in a particular grain and
its phase, respectively. For the grain growth simulation,
we have a two-phase binary system where each phase is
allowed a set of grain ids.

The thermodynamic state of the system is given by an
equation of state (EoS), which has volumetric and inter-
facial terms. The hPPF model uses a free energy func-
tional that incorporates the gradient in composition
term used by the CH equation and the Potts term, i.e.
total number of dissimilar neighboring voxels,
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where f 0 is the bulk chemical free energy and the cs are
the interfacial or surface energy. The CH term goes to
zero as we move away from the interface,
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where dint is the distance to the sharp interface. Our
model only uses the Potts term to account for the inter-
facial energy induced by the curved surface (curvature),
which gives us
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We use polynomial (quadratic) equations to describe the
bulk chemical free energies
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where N is the total number of sites (voxels) in the
simulation system and each site i with q phase stores
energy
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where f i is the bulk free energy for the a and b phases,
and the k and Ci constants are the parameterization

variables chosen to match the work by Homer et al.
(Table 1).

The general microstructural evolution for multi-state
systems has been simulated by the PMC model [9],
which we incorporate to calculate the sharp interfacial
energy, given byZ
S
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where J is the interaction energy between adjacent ele-
ments, n is the number of neighboring particles, d is
the Kronecker delta, and si and sj are the grain id for
the i and j sites. Then, introducing Eqs. (5) and (6) into
Eqs. (1) and (3), we get the following discretized equa-
tions of state:
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To simulate grain growth and phase coarsening, we
minimize the EoS by means of the standard Metropolis
algorithm. For each site i, we choose a neighboring site j
at random and attempt to adopt the neighbor’s id and
phase. The change is adopted following Boltzmann sta-
tistics. The probability of accepting the microstructural
change is given by

P ¼
1; DF 6 0

exp � DF
kBT

� �
; DF > 0

(
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where DF is the change of energy for the event calcu-
lated using Eq. (7) or (8), kB is the Boltzmann constant
and T is the absolute simulation temperature. For the
concentration evolution, we use the phenomenological
equation

@C
@t
¼ r � Mrlð Þ ð10Þ

where l is the chemical potential and M is the mobility.
The chemical potential is defined as l � dF =dC. Incor-
porating Eqs. (1) and (3) into Eq. (10) and non-dimen-
sionalizing, for the hPPF model we get
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where ~t; ~r and ~f 0 are the non-dimensionalized time, spa-
tial gradient and bulk chemical free energy, respectively.
For our sharp interface model we get
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Table 1. Numerical values of the model’s parameterization variables used in the presented simulations.

Parameterization variable C1 C2 C3 C4 k0 k1

Values 0.25 0.75 0.05 0.95 0.3 0.5
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