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Deformation facets form from relaxation of a disconnection pile-up that builds up at an interface under stress. The misorienta-
tion differences between facets are mediated by interfacial disclinations. Any disconnection entering a facet through the disclination
transforms. Faceting between f1 0�12g twins and the basal–prismatic boundary in hexagonal metals illustrates that twinning discon-
nections transformed across the disclination are glissile. This increases twin mobility. Here we present a formal description of defor-
mation faceting using three-colored symmetry groups.
� 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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f10�1 2g twinning is the most glissile twin mode
observed in hexagonal close-packed (hcp) metals [1,2].
Magnesium, for example, allows f1 0�12g twins to rap-
idly envelop entire parent structures [3,4]. This raises
several intriguing questions. Firstly, why f1 0�12g twin-
ning and not other twin modes? Geometric consider-
ations based on shear [5], shuffle complexity, and
twinning disconnection (TD) step height minimization
[6–8] are not sufficient alone to answer this. Secondly,
why does only f10�12g detwin by stress reversal? Det-
winning is interface recession by TDs operating in
reverse to accommodate reversed deformation and is
crystallographically admissible for any twin mode.
Thirdly, why does concurrent slip not significantly
impede f10�12g TDs? In metal structures other than
hcp, twin boundaries (TBs) gradually lose coherency
and stall, because of slip accumulation [9]. However,
in Mg, El Kadiri et al. [4] showed that both highly
mobile twins and their parents slip substantially during
twin propagation. Other preload, load and reload tests
confirmed that twins proceed indifferently to prior or
concurrent slip [10,11,4]. Remarkably, Serra et al. [12]
showed through atomistic simulations that f10�12g
and f10�1 1g TBs, unlike other twin modes, absorb slip
dislocations and convert them to TDs [13,12]. These

results contradict classical theories of dislocation trans-
formation by the twin interface for face-centered cubic
[14–16] and hcp metals [17].

Faceted interface dynamics potentially sheds light on
f10�12g twinning’s seemingly indomitable mobility [18].
Barrett and El Kadiri [19] showed that disconnections
pile-up and relax into a facet lying on a different plane.
Using high-resolution transmission electron microscopy,
f10�12g and f10�11g TBs were observed to adopt fac-
eted morphologies along asymmetric tilt boundaries
[20–23]. In particular, the basal–prismatic (BP) bound-
ary is associated with f1 0�12g twins. According to atom-
istic simulations [19], the BP boundary has slightly
higher energy than the f10�12g TB, so faceting indicates
that the TB has developed high-energy configurations
due to pile-ups of TDs from upcoming slip dislocations,
which then relax to higher-energy boundaries such as
the BP. However, prior work has not elaborated how
the TB migrates quickly as a faceted boundary, allowing
disconnections to swiftly thread the wavy interface and
accommodate twin propagation.

This letter establishes a formal theory of mobile fac-
eted interfaces, focusing on f10�12g faceting with the BP
boundary. We introduce a systematic method of deriv-
ing facet relationships based on group symmetry, and
draw conclusions about how tilt boundary facets and
twins relate.

Interfacial defect theory, developed by Pond [24], is
an invaluable application of anti-symmetry group
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theory [25] to formally describe crystalline interfaces. A
Federov group represents single crystal operations and
is a natural extension of Voltera’s concept of symme-
try-preserving lattice dislocations. Expressions for dislo-
cations, disclinations and dispirations are computed
using Seitz symbols, such that W ¼ ½Fjs�. These expres-
sions are simply affine transformations, with F being a
linear transformation and s being a translation. A valid
affine operation on a perfect crystal produces a new
crystal indistinguishable from the old one. Interfacial
defects are characterized by combining two such opera-
tions, one from each of the single crystals, one labeled
black (l) and the other white (k) [26]:

W kW l�1 ¼ ½Tkjtk�

� ½Fkjsk�½Tkjtk��1½Tljtl�½Fljsl��1½Tljtl��1 ð1Þ
where ½Tk;ljtk;l� are the operations which convert the
black and white lattices to bicrystal coordinates. Dichro-
matic patterns (DPs) usefully depict the space of these
defects by illustrating interpenetrating l and k lattices.
Disconnections are ½Ijb�-type defects, with a non-zero
step height h enabling the interface to migrate via discon-
nection glide. I and b are the identity matrix and the Bur-
gers vector (BV). They are usually identified from
translation operations, ½Ijxl� and ½Ijxk�, which can be
visualized as vectors relating two stepped surfaces of
the two crystals to be joined. If n is the interface unit nor-
mal, the BV and step height take the form
b ¼ Tkxk � Tlxl and h ¼ minðTl;kxl;k � nÞ, respectively.
The sense of n is defined to point into the white crystal.

GBs facet to eliminate barriers to local energy reduc-
tion. They facet onto new boundaries which generally
do not have the same structure as the initial ones. The
misorientation difference from one facet to the adjacent
one is accommodated by a rotational distortion, that is
an interfacial disclination [27] along the facet junction.
The facet junction requires two dichromatic patterns
to be considered for the interfaces on either side of it.
However, to formally identify the disclination and dis-
connection processes, one may assume the rotational
distortion occurs solely on one side of the faceted
boundary, so that the two dichromatic patterns have
one lattice is common. This is physically similar to
faceting where a new facet has experienced severe aniso-
tropic partitioning of strains. The topological simplifica-
tion allows using only three lattices, thus a trichromatic
pattern (TP) is useful to study interfacial defect phenom-
ena along the faceted boundary. This simplification is
mathematically justifiable for crystallographic calcula-
tions (but not for elasticity calculations). In the rest of
this letter, we let l remain undistorted across the facet
junction.

The TP is a particular case of the colored symmetry
group where the complex phase multiplier, �, takes the
value

ffiffiffi
13
p

instead of
ffiffiffi
12
p

for DPs. Thus, there are three
non-geometric qualities instead of two (p = 3 in the lan-
guage of Shubnikov et al. [25]). We color the third imag-
inary lattice as red, denoting it by j from kókkinos, in
the same spirit that was used in DPs. Thus the disclina-
tion at the facet junction converts the white lattice to the
red lattice. The three-colored TP may be visualized as
composed of three different DPs by removing one of

the lattices at a time. Removing j, we obtain the original
DP. Likewise, removing k, we obtain the DP on the
other side of the facet junction. When removing l, a dif-
ferent sort of DP emerges. The relation from k to j is
simply the disclination’s rotation. This produces a discli-
nation dipole’s (DD’s) BV content associated with any
lattice vector in k. Therefore, the BV content of a DD
calculated by [28,19] can be swiftly recovered by assum-
ing the simple case of dislocation formed from non-par-
tial dislocations in both lattices and with step vectors
equal to the facet length vector l, which lies normal to
the GB tilt axis, and where R relates k and j crystals:

fðlÞ ¼ Rl� l ð2Þ
We denote this vector as fðlÞ in reference to its relation to
the disclination’s Frank vector, x [29], and dependence
on the vector, l, separating the disclinations’ poles.

Since k and j form a valid DP, relation (2) may be
recovered by using Eq. (1). Substituting k with j and
l with k, assuming the coordinate frame of k and apply-
ing the appropriate symmetry operations gives:

½Rjj0�½Ijlj�½Rjj0��1½Ijlk��1 ¼ ½IjRjlj � lk� ð3Þ
Thus, fðlÞ is obtained upon requiring lk ¼ lj. Barrett and
El Kadiri [19] demonstrated that deformation facets
form from disconnection pile-ups relaxing into a low-
energy boundary, but with an energy trade-off from
creating a DD. The process is schematically illustrated
in Figure 1. For a pile-up of two disconnections with
BVs given by b ¼ Tkxk � Tlxl each, the white step
vectors are rotated to their red counterparts through
vectors given by Eq. (2), fðTkxkÞ ¼ RTkxk � Tkxk,
which are absorbed by the nucleating DD. Thus, the final
BV content of the disconnection is given by
bf ¼ 2RTkxk � 2Tlxl. RTkxk and Tlxl must both lie
on the plane of the new facet, and a DD emerges mediat-
ing k’s rotation to j with a total dislocation content given
by Eq. (2). The remaining BV is defined in the l–j DP.

Once a new facet has nucleated, gliding interfacial
disconnections collide with the bounding disclination.
Penetration cannot occur conservatively without a
change in the disconnection character. The disconnec-
tion transformation across an interfacial disclination is
schematically illustrated in Figure 2. Assuming a tri-
chromatic event, a Tkgk � Tlgl BV disconnection
entering the facet junction will translate the disclination
and facet junction by Tkgk. This alters the dislocation

(a) (b)

Figure 1. Schematic illustrating the conversion of a disconnection pile-
up to a new facet with a DD. b must satisfy the material flux conditions
on the interface to glide [30].
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