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Abstract—Using a simple beam element, this study estimates the elastic stiffness of two isotropic open-cell foam architectures that
approximate, respectively, the space between tightly packed fluid bubbles and that defined between densified solid particles, and
finds little difference between the two microstructures above a relative density of a few per cent.
� 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The architecture of solid open-cell foams consists of,
by definition, a network of solid struts that connect at
solid nodes and surround interconnected pores [1]. The
specifics of this architecture matter: how the struts and
nodes are shaped and arranged governs much of the per-
formance of open-cell solid foams.

Methods of producing solid structures of polymer
or metal now exist with considerable freedom in the defi-
nition of their architecture; examples include solid free-
form fabrication, the bonding of shape-optimized trusses,
together with precision investment casting for metals.
Such methods open the way, by the freedom that they af-
ford the designer, for the production of open-cell periodic
structures that are optimized for performance in, for
example, their ability to resist elastic deformation or to
conduct and transfer heat [1–14].

Shape-optimized “designer” structures are, however,
still costly to produce; there are other less flexible but
more expeditious ways to produce open-cell foams. One
is foaming: if a swarm of similar close-packed bubbles
is created within a liquid that is later solidified and sub-
jected to reticulation (by which cell walls are broken or
removed), a relatively regular open-cell solid foam results
[1,15]. Another method is replication: here, the pores are
created by a bonded particulate solid space holder that is

eventually removed, typically by dissolution, once open
pores between the space holder particles have been filled
with solid [16,17].

In such “simple” man-made open-cell foams, the
architecture is sub-optimal, somewhat stochastic, and
governed by the process. Both processes produce struts
that have a more or less triangular cross-section, since
struts are in both cases defined as the tunnel situated be-
tween three touching bubbles or space-holder particles.
The struts also generally connect four at a time and in
roughly tetrahedral fashion at each node, since most
nodes are defined as the space between four touching
bubbles or particles. And, since the two nodes at each
end of a given strut are defined by the same three touch-
ing bubbles or particles, the orientation of each set of
three struts to which the central strut is connected at
either end has to be roughly the same.

In both foamed and replicated microcellular solids, the
structure is also random: each pore is surrounded by a
variable number of struts, the length of which is not
regular, the shape of which is in general slightly curved
with an uneven cross-section, and which are not strictly
tetrahedrally connected. Some nodes are also more com-
plex in shape: for example, if these are defined where two
bubbles or particles were close, yet did not touch.

Still, despite irregularity in its arrangement and
dimensions, the most basic architectural building block
(or “brick”) of foamed and replicated open-cell microcel-
lular solids remains the assembly of one strut of more or
less triangular cross-section, connected at each of its ends
to a node at which three other similar struts emanate, the
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four struts at each node making roughly equal angles
with one another. In this building block, the cross section
of each strut is oriented so as to have one of its edges in
the common plane defined by the axes of two neighbour-
ing struts.

The present study examines to what extent realistic ex-
treme variations in the shape of this basic building block,
as determined by contrasting specifics of the two pro-
cesses of foaming or replication, influence the stiffness
of the resulting open-celled foam. This question has its
importance: strut tapering has been shown, in periodic
unit-cells of assembled struts, to influence the elastic stiff-
ness of periodic open-cell foams, while leaving the scaling
exponent N between the stiffness and relative density near
N = 2 if the overall strut shape is kept constant with
changing relative density [18–23]. Noteworthy in the con-
text of this study is the work of Gong et al. [20], who mea-
sured and simulated the solid distribution along struts of
a polymer and a metal open-cell foam, to show that cap-
illary forces, which govern the distribution of the liquid
between bubbles in the foam precursor and thicken the
struts somewhat near the nodes, improve the material
stiffness by as much as 70% compared with what would
be obtained with beams of uniform cross section [20].

Compared with recent models of the deformation of
open-cell foams, this study takes a simplified approach,
which is somewhat similar to that of Gibson and Ashby
[1] in that it focuses on the tensile and bending deforma-
tion of a single elementary seven-strut building block.
Thus, the present study does not consider complex
periodic three-dimensional unit cells of several beams ar-
ranged in large random networks or along regular (e.g.,
Kelvin-cell) patterns (although this elementary building
block can be stacked to produce a regular structure,
namely the hexagonal diamond structure also known as
Lonsdaleite [24]). Rather, it considers the deformation
of a single beam and its immediate surroundings, as in
early models of the deformation of open-cell solids, based
on the reasoning that the stiffness of any assembly, be it
regular or irregular, of such struts will scale as the bend-
ing stiffness of this seven-strut elementary building block.
However, the beam itself is modelled with some sophisti-
cation, since the study considers deformation of the en-
tire seven-strut building block and uses finite-element
simulation to evaluate its stiffness.

2. Modelling

Several deformation modes can be considered for this
building block; the present short contribution focuses on
(i) tensile loading of the seven-beam structure parallel to
its central, “body”, beam and (ii) bending under shear
loading, as was done by Gibson and Ashby [1]. Two ex-
treme shapes are considered for the building block; these
mimic one of the main differences between the two open-
cell foam architectures that are produced by the two
processes of foaming or replication.

When it is defined by bubbles in a foaming process, the
building block shape is governed by capillarity: struts are
plateau borders, and the nodes are smooth rounded con-
cave transitions with the same overall curvature as the
edges of the plateau borders (see Figs. 1.8, 2.7 and 6.6

in Ref. [15] for drawings of these shapes and Refs.
[20,21,23,25] for examples in real microcellular polymer
or metal of this class). Although somewhat tapered near
the nodes (to the foam’s structural benefit, as shown by
Gong et al. [20]), the struts tend to be relatively straight.
The nodes are furthermore small, and the “windows”
that struts define between pores are close to polygonal
(see for example Fig. 5.3 of Ref. [15] and micrographs
or tomographs in Refs. [20,21,23,25,26]).

In replicated structures, by contrast, the struts and
node surfaces are far from capillary equilibrium. Here
the pores are defined, not by soft bubbles, but by the
necks that form between hard solid particles after these
have undergone partial densification by processes such
as cold-pressing or sintering. If one assumes monomodal
spherical solid place-holder particles, windows between
pores are close to circular; hence, struts are strongly ta-
pered, and nodes tend to be much thicker; see Figures 7
and 8 in Ref. [27] for an actual example in which the
particles were spherical.

Thus, two extremes are considered, namely untapered
struts defining polygonal pore windows, on the one
hand, and strongly tapered struts that define circular
windows between pores, on the other. The building
block is simplified by taking the struts to be straight
beams of triangular cross section, and the nodes to be
regular flat-faced octahedra at which struts are con-
nected at four regularly spaced faces, themselves sepa-
rated by flat node surfaces (as in Ref. [28]). The angle
between struts in such structures is dictated by their tet-
rahedral arrangement at each octahedral node: this an-
gle, in turn, dictates that each window be surrounded
by roughly five beams (in conformance with the average
structure of dry foams [15]). Note that the average angle
between struts in such a five-beam window is 72�, which
is very close to the angle of 70.53� between struts in the
present assembly.

To approximate the volume of each cell, it is assumed
that pores are, on average, surrounded by 30 such beams
and by 12 windows, in satisfaction of Euler’s theorem for
dry foams [15], and as in a pentagonal dodecahedron
(regardless of the fact that regular pentagonal dodecahe-
dra do not define a space-filling periodic element: the
irregularities present in actual foams compensate for
that). Each strut is shared with two other pores, such that
the volume of solid per pore is that of 10 struts plus the
corresponding node volume. The relative density of solid
Vs is thus estimated as being the ratio of the volume of so-
lid in one strut plus one-half of a node (i.e., one-quarter
of the octahedral node at either end of the strut), divided
by one-tenth of the volume of a pentagonal dodecahe-
dron with an edge length equal to the distance a between
the centroid of the octahedral nodes at each end of one
strut. Examples of the basic building blocks thus con-
structed are given in Figure 1, at 1.7% and 20% relative
density for each of the two geometries considered.

At the six far ends of peripheral struts, a tetrahedron
was connected to the struts instead of an octahedral
node; in this way, each strut presents a flat parallel sur-
face at either end of the building block, while still pre-
serving the overall building block proportions and
shape (the volume of a tetrahedron is one-quarter that
of an octahedron with the same edge length).
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