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A B S T R A C T

Predicting essential proteins is highly significant because organisms can not survive or develop even if
only one of these proteins is missing. Improvements in high-throughput technologies have resulted in a
large number of available protein–protein interactions. By taking advantage of these interaction data,
researchers have proposed many computational methods to identify essential proteins at the network
level. Most of these approaches focus on the topology of a static protein interaction network. However,
the protein interaction network changes with time and condition. This important inherent dynamics of
the protein interaction network is overlooked by previous methods. In this paper, we introduce a new
method named CDLC to predict essential proteins by integrating dynamic local average connectivity and
in-degree of proteins in complexes. CDLC is applied to the protein interaction network of Saccharomyces
cerevisiae. The results show that CDLC outperforms five other methods (Degree Centrality (DC), Local
Average Connectivity-based method (LAC), Sum of ECC (SoECC), PeC and Co-Expression Weighted by
Clustering coefficient (CoEWC)). In particular, CDLC could improve the prediction precision by more than
45% compared with DC methods. CDLC is also compared with the latest algorithm CEPPK, and a higher
precision is achieved by CDLC. CDLC is available as Supplementary materials. The default settings of
active threshold and alpha-parameter are 0.8 and 0.1, respectively.

ã 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Proteins undoubtedly play important roles in every organism’s
cell. In particular, essential proteins are indispensable because
deleting even one of them is lethal to an organism or renders it
infertile (Winzeler et al., 1999; Kamath et al., 2003). Essential
proteins can also be regarded as drug targets for new antibiotics
because of their indispensability (Clatworthy et al., 2007).

To find essential proteins, researchers have used several
experimental approaches, such as single gene knockouts (Giaever
et al., 2002), RNA interference (Cullen and Arndt, 2005) and
conditional knockouts (Roemer et al., 2003), to discover essential
proteins. Although many essential proteins have been identified
this way, the process is time consuming and expensive. Therefore,
with the fast accumulation of available protein–protein interaction
(PPI) data, studies on computational methods for predicting
essential proteins are attracting increased attention.

In 2001, Jeong et al. pointed out that proteins highly connected
with other proteins in PPI network have higher potential to be
essential than randomly selected proteins (Jeong et al., 2001). This
phenomenon is called the centrality–lethality rule (Jeong et al.,
2001). In recent years, most investigators have proven the positive
correlation between the essentiality of proteins and the
topological centrality (Hahn and Kern, 2005; Batada et al., 2006;
Vallabhajosyula et al., 2009; Estrada, 2006). Based on the latter
finding, a variety of centrality measures for identifying essential
proteins have been proposed. Among these centrality measures,
Degree Centrality (DC) (Jeong et al., 2001), Betweenness Centrality
(BC) (Freeman, 1977), Closeness Centrality (CC) (Wuchty and
Stadler, 2003), Subgraph Centrality (SC) (Estrada and Rodriguez-
Velazquez, 2005), Eigenvector Centrality (EC) (Bonacich, 1987) and
Information Centrality (IC) (Stephenson and Zelen, 1989) are the
most classic ones. Other useful centrality measures, such as Bottle
Neck (BN) (Przulj et al., 2004; Yu et al., 2007), Local Average
Connectivity (LAC) (Li et al., 2011) and Sum of ECC (SoECC) (Wang
et al., 2012), are also designed to detect essential proteins. The
performances of topology-based approaches are known to closely
depend on the quality of PPI networks. However, many false
positive and false negative interactions exist in PPI networks.
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To solve this problem, Li et al. (2010) constructed a relatively
reliable weighted PPI network by taking advantage of gene
annotations. In this weighted network, the performance of the
topology-based methods could be optimized to a great extent. This
result confirms that topological centrality is sensitive to the noise
in PPI networks. To further improve the prediction precision,
researchers attempt to combine biology information with network
topology (He and Zhang, 2006; Zotenko et al., 2008; Chua et al.,
2008). Consequently, several new methods have been proposed.
For example, PeC considers both the edge clustering coefficient and
gene expression data (Li et al., 2012), Co-Expression Weighted by
Clustering coefficient (CoEWC) (Zhang et al., 2013) integrates
clustering coefficient and gene expression data, and another
integrated approach proposed by Luo and Ma (2013) combines
edge clustering coefficient with complex centrality.

Existing methods for identifying essential proteins all regard
the PPI network as a static graph. Given that interactions in static
PPI networks are obtained at different time points and under
different conditions, a static graph can not completely reflect the
real network (Chen and Yuan, 2006; Przytycka et al., 2010). In fact,
PPI networks change over time, in different environments, and at
different stages of cell cycle, which means that dynamism exists in
PPI networks (Przytycka et al., 2010; Han et al., 2004;
De Lichtenberg et al., 2005). Based on this fact, Tang et al.
(2011) constructed a time-course network with gene expression
data and the result indicated that the performance of identifying
functional modules based on the time-course PPI network is better
than that based on a static PPI network. Wang et al. (2013) built a
new dynamic PPI network using a method similar to that adopted
by Tang et al. (2011) and concluded that the dynamic PPI network
can contribute to the discovery of protein complexes. The main
difference between the two approaches is the process of selecting
the active threshold of proteins.

The discovery of functional modules and protein complexes is
more effective when applying algorithms to a dynamic PPI
network. Thus, we suppose that using a dynamic PPI network
topology can enable better prediction of essential proteins than
using a static PPI network. In other words, the effects of topology-
based methods for discovering essential proteins can be improved
by implementing these methods in dynamic PPI network. We
elaborate the theoretical basis of our hypothesis as follows. At a
certain time point, the dynamic PPI network can be represented as
a temporal network (Tang et al., 2011; Wang et al., 2013). In these
temporal networks, interactions form in the same situation and the
included proteins are highly expressed (active). Therefore,
dynamic PPI network is of higher quality. Given this high quality,
topology centralities in dynamic PPI network are more reliable,
which can contribute to a better identification of essential proteins.
The proof of our hypothesis is shown in Section 3.6. Then to further
enhance the effect of predicting essential proteins, we integrate
dynamic network topology and biology information. The
integration of dynamic local average connectivity and complex
information is chosen to predict essential proteins and this new
method is named Combine Dynamic LAC with Complex centrality
(CDLC). To evaluate the effect of our CDLC method, we compare
CDLC with five centrality methods (DC, LAC, SoECC, PeC and
CoEWC). Considering that both LAC and SoECC can outperform all
six classic methods (DC, BC, CC, SC, EC, and IC) (Li et al., 2011;
Wang et al., 2012), we select only DC for comparison because it is
the most accessible among the six methods. The comparison
results suggest that CDLC performs better than the other five
methods (DC, LAC, SoECC, PeC, and CoEWC). Particularly, CDLC can
achieve more than 45% improvement in prediction precision
compared with DC. We also compare CDLC with the latest essential
protein predicting approach named CEPPK (Li et al., 2014), and
results show that CDLC outperforms CEPPK.

2. Methods

The static PPI network is generally considered as an undirected
graph G (V, E), where V is the set of nodes and E is the set of edges.
The nodes in graph G denote the proteins and the edges represent
the interactions between proteins.

2.1. Construction of dynamic PPI network

Tang et al. (2011) and Wang et al. (2013) analyzed the feasibility
of integrating the time-course gene expression data and the PPI
data to build the dynamic PPI network. Both of their methods focus
on the active time points of proteins and introduce an active
threshold to judge whether a protein is in its active form at each
time point. The difference between these two methods is the key to
selecting the active threshold. Wang et al. (2013) also pointed out
that it is reasonable to regard the time points with the highest
expression value of a protein as the active time points, and the time
points with expression values near to the highest one can also be
considered as active time points since small differences are
allowable and noise exists in data. Basing on that, we construct the
dynamic PPI network in the following way, and the effects of
different thresholds on several characteristics of the dynamic
network will be introduced in Section 3.2.

Gene expression data are always in the form of a matrix.
Thus, we use a matrix EXP with the size of m � n to denote it, where
m is the number of probes, which are used to obtain the expression
value of each gene, and n is the total number of time points
contained in the expression experiment. Let c be the number of
cycles included in the expression experiment and nc be the number
of time points in each cycle yields n = c � nc. Considering the
existence of unavoidable noise in the expression array (Wang et al.,
2013), for each gene involved in the gene expression profiles, we
regard the mean of its c expression values obtained at the same
time points in each of the c cycle as the final expression value of
this gene. In this way, we can obtain a new expression matrix
EXP_new with the size of m � nc. Based on this new expression
matrix, the procedure of constructing dynamic PPI network is
described as follows:

Step 1. The expression value in each row of EXP_new is
normalized by dividing each of the nc expression values in row
j (j = 1, 2, . . . , m) by the maximal value in the same row.
Consequently, every expression value ranges from 0 to 1.

Step 2. A proper threshold to determine whether a gene is active
at each time point is obtained. If the expression value of a gene at
time point i (i = 1, 2, . . . , nc) is greater than the active threshold, we
say that the gene is active at time point i.

Step 3. nc temporal networks corresponding to nc different time
points are constructed according to the activity of gene (proteins)
and the static PPI network. For each time point, we determine
each interaction in the static PPI network. If both genes
(proteins) corresponding to this interaction are active at time
point i (i = 1, 2, . . . , nc), we add this interaction and this pair of
proteins to the temporal network related to time point i. After
considering all the interactions in the static PPI network, the
construction of the nc temporal networks is finished.

The purpose of defining the fixed active threshold in Step 2 is to
filter out the genes whose expression level is not sufficiently
high at some of the nc time points. The set of the nc temporal
networks obtained in Step 3 refers to the abovementioned
dynamic PPI network.

2.2. Dynamic local average connectivity

According to Hart et al. (2007) and DezsÅ et al. (2003), in many
cases, essentiality of proteins is not a product of an individual
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