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Plastic deformation in single crystals, coarse-grained polycrystals, micrometric dislocation cells and nanotwinned structures are
all described with a single formulation. The statistical entropy associated with the dislocation paths available for slip and twinning
features strongly in the solution, allowing for the description of stress–strain relationships as a function of strain and strain rate, for
very wide temperature ranges. The model is applied to determine the characteristic plastic behaviour across the scales for pure
copper.
� 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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A frequently employed model to describe plastic
deformation is the Kocks–Mecking formulation [2],
wherein the average dislocation density q is the main
parameter that evolves throughout deformation, and
incorporates dislocation storage and annihilation terms.
In general, the parameters employed in multiscale ap-
proaches are obtained by fitting them to experimental data
to describe the behaviour of specific systems. This becomes
difficult to predict or design for new properties as the
parameters change with composition and microstructure.

In a recent review, McDowell [3] stated that “thermo-
dynamics and kinetics relations are at the core of evolu-
tion equations for microstructure”. The present work is
an attempt to wrap together transitions at various scales
by supplying a thermostatistical foundation to the
Kocks–Mecking formulation across the scales under a
variety of deformation conditions. Copper is taken as
the model material, and the theory has been able to de-
scribe single crystal deformation behaviour; the forma-
tion, size and misorientation of micrometre-scale
dislocation cellular structures; as well as the characteris-
tic stress–strain response of nanotwinned and coarse-
grained microstructures.

A key feature of this theory is the introduction of the
statistical entropy DS that incorporates the possible
paths for dislocation motion. Other than quantifying
the slip systems that are likely to become activated,

the paths that are energetically favourable at a given
temperature and strain rate are considered. A microstate
is defined as the number of interatomic subunits a dislo-
cation segment glides during an arbitrary time step [4].
At high temperatures, where vacancy-assisted disloca-
tion climb prevails, additional microstates are incorpo-
rated to account for their interaction [5]. The total
number of microstates Xint becomes [4,5]:

Xint ¼ ðXdis þ Xv�dÞN ¼
_e0

_e
þ #

_e

� �N

; ð1Þ

where Xdis and Xv�d are the number of microstates due
to dislocation slip and to vacancy–dislocation interac-
tions, respectively; _e is the axial strain rate; N is the
impingement effect due to the overlapping strain field
of contiguous dislocations that alter the possibilities
for dislocation slip, and is related to the stacking fault
energy of the material1; _e0 ¼ cbqY is the limiting value
for the strain rate, a constant related to the speed of
sound in the material (c); b is the magnitude of the Bur-
gers vector; qY = (rY/aMlb)2 is the dislocation density
consistent with the yield point, where a = 0.3 is a ther-
mal constant [2], M = 3 is the Taylor factor [2] and l
is the shear modulus; and # ¼ #D exp � Em

RT

� �
is the va-

cancy migration frequency, wherein #D = 1013 s�1 is
the Debye frequency and Em is the vacancy migration
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energy. The statistical entropy incorporating the disloca-
tion’s kinetic effect then becomes [4,5]:

DS ¼ kB ln Xint ¼ kB ln
_e0 þ #

_e

� �N

: ð2Þ

The dislocation density evolution is obtained by refor-
mulating the Kocks–Mecking approach and expressing
the dynamic recovery coefficient (f) in terms of physical
parameters within the thermostatistical framework [4,2].
An additional term (C) accounting for dislocation stor-
age if nanotwins are present, thereby impeding the dislo-
cation’s motion, is incorporated [6,7]:

dq
dc
¼ k1

b
ffiffiffi
q
p

|fflffl{zfflffl}
ðAÞ

� f q|{z}
ðBÞ

þ N nT

bDTB|ffl{zffl}
ðCÞ

; ð3Þ

where k1 ¼ 1
30

l
l0

� 	2

is the dislocation storage coefficient

[2], l0 is the shear modulus at 0 K, DTB is the average
nanotwin-boundary thickness and NnT is the dislocation
storage term due to the presence of nanotwins. Note
that, when coarse-grained polycrystalline metals are
analysed, the term (C) vanishes as DTB!1. f is equal
to [4,5]:

f ¼N Aqab2l�

wa

NTDS
1
2
lb3þrY Aactb

3þ l�

b dðT ÞðEf þkBT lncmÞ�NkBT ln _e0þ#
_e

� �;
ð4Þ

where NA is Avogadro’s number; wa is the material’s
atomic weight; qa is the material’s density; l* is the dis-
location’s distortion field length (�98% of the total
strain field induced by the dislocation [4]); Aactb

2 is the
activation area for cross-slip2; Ef is the vacancy forma-
tion energy; cm is the vacancy concentration at the melt-
ing point (Tm); and d(T) is a continuum piecewise
function [5], due to which the vacancy contribution van-
ishes (d = 0) at low temperatures (T < T0), where
T 0 ¼ Em

R lnð#D=_eÞ, below this value, the governing annihila-

tion process is slip/cross-slip [2]; d(T) becomes fully
present (d = 1) at high temperatures (T > Tf), where va-
cancy-assisted dislocation climb prevails [8], where
T f ¼ Em

R lnð#D=_e0Þ. In the regime T0 < T < Tf, d(T) incorpo-

rates a mixture of cross-slip and vacancy-assisted climb
processes [5].

The shear stress s is obtained from the Taylor relation
[2] s ¼ alb

ffiffiffi
q
p þ sD [2], where sD is the shear back stress

induced when nanotwinning is present, impeding the mo-
tion of other dislocations [9]. It is worth noting that sD is
neglected for single crystal/polycrystalline materials.

At the micrometre scale, dislocation cellular struc-
tures are formed on deformation. Although their aver-

age size is known to scale with q�1/2 [10], the

proportionality constant is usually fitted to experiments,
as it varies with temperature and strain rate. The
changes in the average cell size (dc) can be obtained by
performing an energy balance between the energy stored
in the dislocation cell in the form of partials and the
addition of the energy of the dislocation forest in the

non-cellular material plus the dislocation slip energy to
form the cellular structures; the latter is approximated
by the statistical entropy for dislocation motion [11].
The resulting relation becomes: dc ¼ jcffiffi

q
p , where

jc ¼ 12pð1�mÞ
ð2þmÞ 1þ N�1T DS

1
2lb3

� 	
[11] and m = 0.33 is the Poisson

ratio [12]. It is important to note that no additional
parameters are incorporated in this formulation.

Another property of dislocation cells that is of great
relevance for technological applications at the submicro-
metric scale is the evolution of their orientation. The
Young–Laplace equation has been employed to obtain
an expression for the evolution of the average misorien-
tation angle (h) between adjacent cells by analysing the
development of residual stress [11]. An analysis of dislo-
cation glide inside the walls is performed to relate the
strain induced within the walls to the total strain. The
statistical entropy features as a key element in the anal-
ysis as it is related to the pressure induced by disloca-
tions arriving at the walls. The evolution of h is equal

to h ¼ jhc2=3, where jh ¼ 3
2

� �1=3 4N�1T DS
jclb3M

� 	2=3

[11].

When a metal is deformed at a low temperature and a
large strain, a different work hardening regime may be
observed. This is referred to in the literature as stage
IV, and is the stage at which variations in cell size and
misorientation become the main contributors to the evo-
lution of the dislocation density [17]. The Young–La-
place equation is applied to stage IV by approximating
the dislocation density variation around the cell walls
with respect to the misorientation induced by a large
amount of deformation [11]. The evolution of the dislo-
cation density at this stage is:

qIV ¼
ffiffiffiffiffi
q�0

p
þ kIV

2b
h� h�0
� �� �2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðA0Þ

; ð5Þ

where kIV ¼ 1
8jc

lb3

N�1T DS
, and q�0 and h�0 are the dislocation

density and misorientation angle at the onset of stage
IV, respectively, and are obtained when Eq. (3) and the
derivative with respect to c in Eq. (5) have the same value.

Results for copper single crystals (terms (A) and (B) in
Eq. (3)) at different temperatures and strain rates are
shown in Figure 1 for (a) the saturation shear stress (dq/
dc = 0) in terms of the homologous temperature Th = T/
Tm and (b) the shear stress–shear strain curves for different
temperatures and shear strain rates (_c ¼ M _e), and are
compared with experimental data obtained from [19–
22]. Table 1 shows the physical parameters employed
in the model. It is worth noting that the additional soft-
ening behaviour shown in the experiments at 673 and
1223 K is due to dynamic recrystallization [20], an effect
not included in the model. Figure 1(c) and (d) shows the
model results for the average cell size in polycrystalline
copper as functions of temperature and shear strain;
the experimental results were obtained from [10] and
[23], respectively. The average dislocation density is cal-
culated using Eqs. (3) and (5) for stages I–III and IV
((A0) in Eq. (5)), respectively. The large deformation
behaviour of polycrystalline copper is shown in Figure
1(e) for the shear stress–shear strain curves when de-

2 Aact is dimensionless.
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