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A model describing the retraction kinetics of a fully faceted edge of a single crystalline thin film deposited on a non-wetting sub-
strate is proposed. The kinetics of retraction is very similar to that of a fully isotropic film. The calculated topography profile of the
edge exhibits a single maximum and no local minima (depressions). The implications for the solid-state dewetting mechanisms are
discussed.
� 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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Solid-state dewetting or agglomeration of thin
films is a process by which a thin continuous film uncov-
ers a substrate and transforms into an ensemble of iso-
lated particles. Dewetting is well known for thin metal
films on ceramic substrates because the wettability of
oxide ceramics by metals is poor and exposing the sub-
strate reduces the total interfacial energy of the system
[1–4]. According to a widely accepted point of view
[5], the film dewetting in the solid state is controlled
by the kinetics of a receding film edge, either circular
[6] or planar [7]. The material of the film removed from
the substrate accumulates close to the edge, forming a
characteristic hill, provided that the material is trans-
ported by a diffusion mechanism and no material is lost
due to evaporation. At larger distances from the film
edge, the hill is followed by a depression [6]. Both the
hill height and depression depth increase with increasing
heat treatment time. Once the depression has reached
the substrate, the hill pinches off from the rest of the
film, forming an isolated island. Immediately thereafter
the formation of a new hill begins in the remaining part
of the film, renewing this mass-shedding process [7]. In
the long run, because of the periodic mass shedding at
the receding edge, the latter retracts with a constant
speed over a long period of time [7].

Recent experimental data on agglomeration of thin
solid films challenge the simplified dewetting scenario

presented above. For example, the cross-sectional elec-
tron microscopy micrographs of receding edges of the
10–30 nm thick polycrystalline Au films deposited on
oxidized Si substrates presented by Müller and Spolenak
[4] clearly demonstrate a faceted nature of the hill and
the absence of a nearby depression. Hill faceting and
the lack of any depression are also obvious on cross-sec-
tional micrographs and atomic force microscopy (AFM)
topography images of the receding edges of single crys-
tal Ni films deposited on MgO substrates [8], and of thin
Si film on SiO2 [9].

The faceted nature of the receding film edge poses a
serious challenge to the theoretical description of the pro-
cess kinetics. Indeed, the existing theories of the process
are based on a classical picture of the curvature-driven
surface diffusion (we assume that, for the very thin films
considered in the present work, the contribution of
surface diffusion to the mass transport dominates over
that of bulk diffusion) [6,7]. This description fails for
atomically flat facets which do not exhibit any mathemat-
ical curvature.

Carter et al. [10] proposed a general method for treat-
ing diffusion-controlled shape evolution of fully faceted
crystals. In the present work, we will apply this method
to the description of receding kinetics of the fully faceted
thin film edge. Dornel et al. [9] developed a numerical
algorithm for the description of anisotropic film edges
that is based on the same ideas of thermodynamics of
anisotropic surfaces used by Carter et al. [10]. It was
shown that the depth of the depression close to the film
edge strongly depends on the details of the c-plot (the
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polar plot of surface energy vs. surface normal orienta-
tion). However, for the c-plots investigated in the work
of Dornel et al. both the flat facets and smoothly curved
surfaces were present in the film edge profile [9]. The
aim of this work is to investigate the effect of strong sur-
face anisotropy on the shape evolution of film edges.
Therefore, we will consider only fully faceted surfaces
and adopt the approach of Carter et al. [10] for describing
their kinetics.

Keeping in mind the applications to thin films of Au
and Au-based alloys, we will consider the film edge de-
fined by only two types of facets (Fig. 1). Indeed, only
the {1 1 1} and {1 0 0} facets are present in the equilib-
rium shape of small Au single crystals [11], and in most
cases as-deposited Au films exhibit a strong h1 1 1i texture
[4]. The film edge retracts because the atoms from facets
ab and bc move (by surface diffusion mechanism) to facets
cd and de (the latter is parallel to ab). We also introduce an
additional facet ef (parallel to bc), to check the possibility
of the depression development behind the moving hill.

Following the approach of Ref. [10], the average
chemical potential of the atom on the nth facet, ln,
can be calculated as a variation of total surface energy
of the system, E, with respect to the normal displace-
ment of the facet, dnn:

ln ¼ X
dE

Andnn
ð1Þ

Here An is the area of the facet, and X is the atomic vol-
ume. Applying Eq. (1) to the geometry of Figure 1 leads
to the following expressions for the average chemical
potentials of the atoms on the facets:

lab ¼
X
h1

ci � cs þ
cab sin u2 þ cbc sin u1

sinðu1 þ u2Þ

� �
ð2aÞ

lbc ¼
X
h2

ccd þ
cab sin u2 þ cbc sin u1

sinðu1 þ u2Þ

� �
ð2bÞ

lcd ¼
X
w

cbc � ccd cos u2

sin u2

þ cab � ccd cos u1

sin u1

� �
ð2cÞ

lde ¼
X

h1 þ h2 þ h3 � h0

ccd �
cab sin u2 þ cbc sin u1

sinðu1 þ u2Þ

� �
ð2dÞ

lef ¼
X
h3

ccd �
cab sin u2 þ cbc sin u1

sinðu1 þ u2Þ

� �
ð2eÞ

where ci is the energy of film/substrate interface, and cab,
cbc, etc. denote the energies of the respective facets. The
meaning of the geometrical parameters h0, h1, h2, h3, /1

and /2 is clear from Figure 1. In Eq. (2) we took into
account the fact that the facet couples de–ab, ef–bc
and fg–cd represent crystalographically identical sur-
faces and therefore cde ¼ cab, cef ¼ cbc and cfg ¼ ccd . It

should be noted that the chemical potentials in Eq. (2)
should be understood as excess quantities associated
with the finite length of the facets, something which is
similar to surface curvature in the thermodynamics of
smoothly curved surfaces. In this respect, lfg = 0, be-
cause the initial film is infinitely long.

The normal velocity of the facet xy, Vxy, is deter-
mined by the difference of the incoming, Jx, and outgo-
ing, Jy, surface diffusion fluxes:

V xy ¼ X
J x � J y

lxy
ð3Þ

where lxy is the facet length. We calculate these fluxes
using the approach of Ref. [10]. While the average val-
ues of chemical potential for the facets xy, lxy, are given
by Eq. (2), the chemical potential itself is a function of
the distance along the facet, s. To find this functional
dependence, l(s), we note that the surface diffusion flux,
J, is proportional to the gradient of the chemical poten-
tial along the surface, while the normal velocity of the
surface, V, is proportional to the divergence of this flux:

J ¼ �Dm
kT

@l
@s

; V ¼ �X
@J
@s

ð4Þ

In these equations D and m are the effective surface
diffusion coefficient and the density of the mobile atoms
per unit area of the surface, respectively, and kT has its
usual thermodynamic meaning. The first expression in
Eq. (4) is based on the Nernst–Einstein relation and is
valid in the thermodynamic limit of a low driving force
for diffusion. Martin and Benoist [12] demonstrated that
significant differences of the diffusion concentration pro-
files calculated employing the atomistic jump frequency
approach and the classical diffusion equation approach
are observed for the width of the diffusion zone
X 6 10a, where a is the interplanar spacing of the crys-
tal. Based on this result, the lower bound of the film
thickness, h�0, for which the approach based on Eq. (4)

is valid, can be estimated as h�0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
10Xccd a

kT

q
, which for

the parameters for pure Au yields h�0 � 2 nm (for
T = 500 K). Therefore, our model can be applied to
films thicker than just few nanometers.

Because all points on the facet move simultaneously
with identical velocities, the velocity V does not depend
on s, hence l(s) is a parabolic function of s. For the facet
xy, this means:

J xþ ¼ �
mxyDxy

kT
@l
@s

� �
xþ
¼ � mxyDxy

kT

6lxy � 4lx � 2ly

lxy
ð5Þ

J y� ¼ �
mxyDxy

kT
@l
@x

� �
y�
¼ � mxyDxy

kT

�6lxy þ 2lx þ 4ly

lxy
ð6Þ

where lx and ly are the chemical potentials at the facet
edges x and y, respectively. The normal velocity of the
facet is then:

V xy ¼ �X
J y� � J xþ

lxy
¼ 6

mxyDxyX

l2
xykT

ðlx þ ly � 2lxyÞ ð7Þ

The unknown values of the chemical potentials lx, ly,. . .
can be found from the conditions of continuity of the
surface diffusion fluxes at the facet edges. This yields

Figure 1. Anisotropic edge of a thin film with all geometric parameters
of the model shown.
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