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Contrary to the usual characteristic of conventional Harper–Dorn creep, recent experiments by the authors suggest a stress expo-
nent of �3 in the Harper–Dorn regime and a variation in dislocation density with stress as a direct extension of the behavior antic-
ipated within the five-power creep regime. A model for low stress creep, suitable for the Harper–Dorn regime, is presented in terms
of a network-based model that is a modification of earlier work by Evans and Knowles. Our modifications to the model are con-
sistent with new experimental results at very low stresses where subgrains are absent.
� 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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Creep at very high temperatures (�0.9–0.99Tm,
where Tm is the absolute melting temperature of the
material) and low stresses (r/G � 10�5–10�6) has often
been described as belonging to the Harper–Dorn creep
regime. Conventionally, Harper–Dorn creep is associ-
ated with a stress exponent, n, of 1 and activation en-
ergy, Q, equal to the activation energy for self-
diffusion, QL, [1]. Recently, Kumar et al. [2,3] proposed
a higher value for the stress exponent equal to �3 for the
Harper–Dorn regime based on: (i) their experimental re-
sults on [ 100 ]-oriented single crystal Al samples and (ii)
critical examination of the various earlier studies sup-
porting conventional Harper–Dorn creep behavior.
There are several theoretical models for conventional
Harper–Dorn creep [4,5] but none appear to be widely
accepted. All such models suggest the independence of
the dislocation density and the applied stress within
the Harper–Dorn regime. As shown in Figure 1, Kumar
et al. [2] reported that the dislocation density varies as
the square of the applied stress even in the Harper–Dorn
regime and the values of dislocation densities are consis-
tent with the extrapolation of five-power-law regime
behavior. Hence, the basic framework of all the earlier
Harper–Dorn theories appears in doubt.

It is now well accepted that dislocations in steady-
state structures at high temperatures and low stresses

form a three-dimensional Frank polyhedron network
[5]. Network models generally consider coarsening of
the dislocation network due to recovery of sessile links
(l < lc where l is the dislocation-link length and lc is
the critical dislocation-link length required for activat-
ing dislocation sources). A discussion of the network-
based models by Ardell and Lee [6] in the Harper–Dorn
regime (all link lengths < lc) is presented elsewhere [4]. It
predicts, contrary to recent experiments [2,3], a stress
exponent of �1. Evans and Knowles [7] presented a
recovery-based model for the evolution of dislocation
network that may also be consistent with natural
three-power law at low stresses. The Evans and Knowles
model [7] is attractive but predicts strain rates that are
�15 times faster than observed strain rates in the
Harper–Dorn regime (Fig. 2).

At present, there is a need of a theoretical model for
creep which is: (i) based on the dislocation network the-
ory, as subgrains are generally not observed in this
regime [2,3]; (ii) consistent with the variation of the dis-
location density with the applied stress; and (iii) relevant
to the very low stresses of the Harper–Dorn regime. In
the present work, the model of Evans and Knowles [7]
was carefully examined for any necessity for modifica-
tion. It was modified in order to develop a dislocation
network theory for creep in the Harper–Dorn regime.

It is assumed that the distribution of the dislocation-
link lengths is uniform with the smallest length equal to
the Burgers vector, b, and the largest link length equal to
the critical link length for a Frank–Read source, Lc. It is
assumed:
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�l ¼ 1ffiffiffi
q
p ; ð1Þ

where �l is the average dislocation-link length and q is the
dislocation density [8].

Phenomenologically, it is known for polycrystals that
[5]:

rss ¼ k0Gb
ffiffiffiffiffiffi
qss

p
; ð2Þ

where rss is the steady-state stress value, k0 is a constant
and G is the shear modulus. Throughout this article, the
subscript ‘‘ss” represents steady-state. Eq. (2) is shown
to be consistent with a verified Taylor equation for
five-power-law steady-state creep of polycrystalline Al
[9]. The following equation can be written for single
crystals, assuming that a similar equation as that of
Eq. (2) is also valid for single crystals:

rss ¼
a0

Save

Gb
ffiffiffiffiffiffi
qss

p
; ð3Þ

where a0 is a constant and Save is the average Schmid fac-
tor of the active slip-systems. Combining Eqs. (1) and
(3) gives the following expression for �l:

�l ¼ 1ffiffiffi
q
p ¼ a0Gb

Saver
: ð4Þ

By definition, the dislocation density is equal to the
product of the average dislocation-link length and the
total number of dislocation-links per unit volume, N.
Hence, the following expression for N is calculated
based on Eq. (4):

N ¼ q
3
2 ¼ 1

�l3
: ð5Þ

It is assumed that the glide of dislocation-links is
rapid and creep is controlled by dislocation climb. For
a three-dimensional dislocation network, both nodes
and dislocation-links may climb. The following climb
velocities are calculated [7]:

vn ¼
4pDLFb

kT
; ð6Þ

vl ¼
2pDLFb

kT ln
�l
2b

� � ; ð7Þ

where vn is the climb velocity of nodes, DL is the lattice
diffusion coefficient, F is the total force per unit length of
the dislocations, k is the Boltzmann constant, T is the
temperature and vl is the climb velocity of dislocation-
links. Eq. (6) assumes that the climb velocity of a single
node is equivalent to that of a jog and is taken from
Hirth and Lothe [10]. Eq. (7) is originally from Weert-
man [11]:

vl ¼
2pDL

b ln R
b

� � exp
r�X
kT

� �
� 1

� �
; ð8Þ

where R is distance from the dislocation to the point at
which the vacancy concentration is equal to the equilib-
rium vacancy concentration, r* is the total stress acting
on the dislocation that produces a climb force and X is
the atomic volume. Eq. (8) reduces to the form of Eq. (7)
based on the reasonable assumptions that R = �l/2, X =
b3, F = rb and the activation volume, r*X/kT < 1 (which
is equal to �10�4 for the maximum stress used by
Kumar et al. [2,3]). Assuming r* X/kT < 1 reduces
exp(r*X/kT) to �1 + r*X/kT.

The ratio of vn and vl, as given by Eqs. (6) and (7), is
>1 (�20 for stresses used by Kumar et al. [2,3]) and
hence the climb of dislocation-links is expected to gov-
ern creep in the Harper–Dorn regime. Based on the val-
ues of the pipe diffusion coefficient and the lattice
diffusion coefficient, it can be concluded that at higher
temperatures and lower stresses, as in the case of creep
in the Harper–Dorn regime, lattice diffusion will be the
rate-controlling processes.

There are two external forces on the dislocations: (i) the
applied stress and (ii) the stresses due to other dislocations
(elastic interaction). Nevertheless, there is a tendency of a
dislocation-link to increase its length to reduce the line
tension and hence this also contributes to the total climb
force. The following is an approximate expression, similar
to that in Evans and Knowles [7], for F:

Figure 2. Comparison of the Evans and Knowles model [7] with the
experimental data on pure Al single crystals as reported by Kumar
et al. [2,3]. Lines with slopes 4.5 and 3.2 are shown in the plot. For the
Evans and Knowles model [7] the equation predicting a stress exponent
of �3 is used and the pipe diffusion term is neglected.

Figure 1. Dislocation density vs. normalized stress showing data
measured on pure Al. Graph is reproduced from Refs. [2,3].
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