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Molecular dynamics simulation was used to investigate reactions of a 1
2
h111if110g edge dislocation with interstitial dislo-

cation loops of 1
2
h111i and h1 0 0i type in a model of iron. Whether loops are strong or weak obstacles depends not only on loop size

and type, but also on temperature and dislocation velocity. These parameters determine whether a loop is absorbed on the dislo-
cation or left behind as it glides away. Absorption requires glide of a reaction segment over the loop surface and cross-slip of dipole
dislocation arms attached to the ends of the segment: these mechanisms depend on temperature and strain rate, as discussed here.
� 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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The microstructure of neutron-irradiated ferritic
alloys, which are important structural materials for nu-
clear reactors, typically contains dislocation loops,
nanovoids and second-phase particles. At sufficiently
high doses (a few dpa), defects detectable by transmis-
sion electron microscopy (TEM) in body-centred cubic
(bcc) Fe and Fe-based alloys are mainly self-interstitial
atom (SIA) dislocation loops with Burgers vector, bL,
equal to either 1

2
h111i or h1 0 0i (see Refs. [1,2] and ref-

erences cited therein). Loops present in the matrix can
pin dislocations and thereby obstruct their motion by
either contact or elastic interaction, which leads to an in-
crease in the yield stress and a reduction in ductility, the
phenomenon known as “matrix hardening” (e.g. [3,4]).
Rationalization of the dislocation–loop interaction
mechanism requires detailed atomic-level information,
which is why this problem is primarily addressed using
molecular dynamics (MD) techniques.

A series of MD studies of the interaction of a
1
2
h11 1if110g edge dislocation with a periodic row of

loops in Fe with bL equal to either 1
2
h111i or h1 0 0i

[5–9] has already been reported. For 1
2
h111i loops it

was revealed that those with bL parallel to the disloca-
tion glide plane do not offer significant resistance to

the glide of an edge dislocation and can be easily ab-
sorbed or dragged by it: we do not consider them further
here. Loops with bL inclined to the glide plane are at-
tracted by an edge dislocation and react with it [7]. Small
loops (e.g. containing up to 37 SIAs) are easily absorbed
as superjogs on the dislocation line (an effect which is
equally true for both edge and screw dislocations)
[7,10]. Larger ones (>100 SIAs) react with the disloca-
tion to form a segment with b of h1 0 0i type, which is
sessile in the dislocation glide plane and thus pins the
dislocation [5,7,8]. The reaction mechanism and the crit-
ical stress, sC, required to unpin the dislocation depends
on temperature and loop size [5–8]. The results obtained
so far suggest that even relatively large 1

2
h111i loops

(331 SIAs) can be completely absorbed at sufficiently
high temperature (P300 K).

Dislocation reaction with a h1 0 0i loop forms a seg-
ment with Burgers vector 1

2
h11 1i, which, in contrast with

the h1 0 0i segment on a 1
2
h111i loop, results in a wider

variety of outcomes, ranging from total loop absorption
by the edge dislocation to none [9]. However, h1 0 0i loops
with bL lying in the dislocation slip plane are strong barri-
ers to dislocation glide, whereas others are weak.

In this paper, 1
2
h11 1i and h1 0 0i loops that offer

strong resistance to edge dislocation glide are considered
specifically, since they have the greatest potential to af-
fect the plastic response to load. We therefore study
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reactions of the 1
2
½111�ð1�10) edge dislocation with loops

with bL ¼ 1
2
½1�11� or [0 0 1] and size up to 8.6 nm under

both static (temperature T = 0 K) and dynamic
(T < 600 K) conditions. The conditions of temperature,
applied strain rate and loop size that affect whether a
loop is a strong obstacle for an edge dislocation are as-
sessed. We show that the mechanism of loop absorption
by the dislocation is important in this regard, and that
glide of a reaction segment and cross-slip of dipole side
arms are necessary steps in the process.

The 1
2
½111�ð1�10Þ edge dislocation was constructed

using the model developed in Ref. [11]. Periodic bound-
ary conditions were imposed in the directions of b and
the initially straight dislocation line. Dislocation glide
was induced by applying a ½111�ð1�10Þ shear strain to ri-
gid boundary atoms in the ½1�10� direction at a constant
rate, _c, in the range 106 to 5 � 107 s�1. The correspond-
ing shear stress–strain (s–c) relationship for the disloca-
tion reacting with a periodic row of identical loops was
obtained by estimating the stress acting on the outer ri-
gid parts of the crystallite that were subject to the shear
displacement. Earlier work [11] has shown that the effect
of periodicity along [1 1 1], which creates a periodic ar-
ray of parallel dislocations, is insignificant, even for
strong obstacles, if the model dimension along [1 1 1]
is large enough, as here (see below).

Circular 1
2
h111i SIA loops were created below the

dislocation slip plane, while square h1 0 0i loops with
sides oriented along h1 1 0i directions were placed so
that the dislocation could intersect them. The number
of SIAs in the loops was varied from 37 to 1225, corre-
sponding to loop diameter, D, in the range 0.5–9 nm.
Simulation of reactions with the largest loops was per-
formed in crystals containing up to 6 � 106 atoms,
whereas reactions involving smaller loops were modelled
in crystals containing �1 � 106 atoms. The length, L, of
the dislocation line along the periodic direction was var-
ied from 20.5 to 61.5 nm and the crystal size along [1 1 1]
was varied from 100b up to 200b depending on the loop
size and simulation temperature. The size of the crystal
along the [1�10] direction normal to the slip plane was
20 nm. Thus, the dislocation density was in the range
1–2 � 1015 m�2, resulting in a free-flight dislocation
velocity ranging from 2 to 200 m s�1 for the strain-rate
range specified above. Simulations were performed with-
in the NVE ensemble without additional temperature
control, varying the MD integration time step from 2
to 5 fs. All simulations used the many-body interatomic
potential for Fe from Ref. [12].

An edge dislocation can fully absorb small loops of
up to �61 SIAs under all the conditions considered,
and larger loops are also absorbed under certain condi-
tions, as discussed later. The absorption mechanism is
briefly the following. First, the geometry must allow
for intersection of the dislocation line and a loop edge.
For this, 1

2
½1�11� loops, which have a glide prism inclined

to the ð1�10Þ plane, can be positioned below the disloca-
tion glide plane of a positive edge dislocation and glide
under attraction so that the two cores meet. Loops with
bL = h1 0 0i have lower mobility and have to be posi-
tioned more precisely so that they intersect the glide
plane. Second, the compete absorption of a loop with

bL ¼ 1
2
½1�11� reported in Refs. [5,7,8] involves the forma-

tion of a [0 1 0] reaction segment that pins the disloca-
tion, which bows out under increasing stress until a
screw dipole is formed. The [0 1 0] segment then glides
across the loop surface and converts bL to 1

2
½111�, after

which the loop is absorbed as a double superjog on the
1
2
½111� dislocation. For the h1 0 0i loops, several mecha-

nisms occur [9], depending on their orientation and
structure. Here we consider the case when bL = [0 0 1],
the loop sides have h1 1 0i directions and the uppermost
loop segment lies in the dislocation glide plane. An
absorption reaction proceeds as follows. The disloca-
tion, being attracted to the loop, moves towards it and
undergoes an energetically favourable reaction with
the upper side of the loop to form a 1

2
½11�1� segment.

The latter propagates across the loop surface, convert-
ing bL to 1

2
½1 11�, after which the loop is incorporated

in the dislocation line as two superjogs. The superjogs
rearrange into a U-shape with segments aligned along
h1 1 2i directions and the dislocation continues to glide.

However, as we now explain, whether or not these
mechanisms of complete absorption of a loop by an
edge dislocation actually occur depends on the simula-
tion conditions. Furthermore, the critical stress at which
the dislocation is released varies significantly with loop
size, ambient temperature and/or strain rate. Consider
first the effect of temperature on sC. Plots of sC vs. T
for 1

2
½1�11� and [0 0 1] loops containing 169 SIAs (i.e.

D � 3 nm) are shown in Figure 1a. At low temperature
no absorption occurs and the dislocation is unpinned via
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Figure 1. sC for the edge dislocation to pass a periodic row
(L = 41 nm) of loops with bL = [0 0 1] or 1

2
½1�11� at _c ¼ 107 s�1. (a)

sC vs. T for loops containing 169 SIAs. (b) sC vs. D at T = 300 K.
Label N/A denote reactions where the pre-existing loop was not
absorbed.
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