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We derive an explicit expression for predicting the thicknesses of shear bands in metallic glasses. The model demonstrates that the
shear-band thickness is mainly dominated by the activation size of the shear transformation zone (STZ) and its activation free vol-
ume concentration. The predicted thicknesses agree well with the results of measurements and simulations. The underlying physics is
attributed to the local topological instability of the activated STZ. The result is of significance in understanding the origin of inho-
mogeneous flow in metallic glasses.
� 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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The shear-banding-mode plastic flow of metallic
glasses (MGs) at ambient temperature continues to fas-
cinate and challenge scientists [1–5] because of its phys-
ical origin and practical implications. The free volume
creation [6] and local heating generation [7], in which
shear-band thickness is an important factor [2,8], are
two potential causes of shear-banding instability in
MGs. Here, the shear-band thickness is the characteris-
tic width of the strain localization normal to the shear
plane, and is not involved in the ultimate failure. In gen-
eral, the thickness of shear bands in MGs is restricted to
a rather narrow range from several to 10 or more nano-
meters, regardless of chemical components and loading
methods (including tension, compression, bending,
indentation, rolling, etc.); this has been widely found
by direct experimental observations [9–15], or by numer-
ical simulations [16–18]. Such localization of plastic
flow, far smaller than the thickness (10–500 lm) of adi-
abatic shear bands (ASBs) in conventional alloys [19],
suggests that the shear bands in MGs have a structural,
rather than a thermal, origin [1,2,8]. Furthermore, the
coupled thermomechanical analysis of shear-banding
instability in MGs reveals that the onset of this instabil-
ity is mainly controlled by local free volume softening
[20] via discrete atomic jumps [6] or cooperative arrange-
ment of local atomic clusters, termed the ‘‘shear trans-
formation zone” (STZ) [21] or ‘‘flow defect” [22]. The

STZ is the fundamental unit process underlying plastic
deformation associated with the free-volume evolution.
Although the study of thickness provides insight into
the origin of shear-banding instability, the theoretical
prediction of the shear-band thickness itself in MGs lags
well behind that of ASBs in crystalline alloys.

Very recently, Joshi and Ramesh [23] have predicted a
shear-band thickness of about 10–50 nm, based on a rota-
tional plastic deformation mechanism in nanocrystalline
materials at grain sizes approaching the amorphous limit
(�2 nm). The lower bound of their predicted thickness
agrees well with the shear-band thicknesses for many
MGs [2]. This means that the flipping of STZ may be valid
for the shear localization process in MGs. In addition, fi-
nite STZ sizes of about 1–2 nm (not reaching 2 nm) have
been identified by many recent works [24–28]. Interest-
ingly, the ‘‘10-time-rule” in granular materials [29] seems
to be roughly satisfied in MGs, i.e. the shear-band thick-
ness is approximately 10 times the STZ size, implying a
similar shear instability mechanism between the two
materials. However, the quantitative relationship be-
tween the thickness of the shear band and the size of
the STZ is still under investigation, and the underlying
precise physics that dominates the shear-band thickness
is not clear. In this paper, we present an explicit expres-
sion of the thickness of shear banding based on shear
instability due to STZs in metallic glasses. Its underpin-
ning nature is discussed.

Plastic deformation of MGs occurs by the cascade of
STZs or flow defects [3,21,22,30]. Subjected to an
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external shear stress s, an STZ with activation volume
Xa undergoes a characteristic shear strain ca(�1)at a rate
that depends on s. The concentration of STZs Cn,
namely the fraction of material that is available
to STZ operations in a unit volume element, is statisti-
cally related to the free volume concentration n by
Cn = exp(�1/n) [3,22]. Thus, the STZ operations in unit
volume element can be characterized by the evolution of
n as [20,31]:

@n
@t
¼ Dn

@2n
@y2
þ Gðs; nÞ; ð1Þ

where Dn is the diffusion coefficient of free volume con-
centration [31], and the net creation rate function G is
the combined rate of annihilation and generation of free
volume, and is taken to be dependent on the local con-
centration of free volume n, and the shear stress s [6].
The explicit expression of G was given first by Spaepen
[6], as follows:
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where v is a geometrical factor, v* is the critical volume or
the effective hard-sphere size of an atom, the attempt fre-
quency m0 is essentially the frequency (approximately the
Debye frequency) of the fundamental mode vibration
along the reaction pathway [22], DGm is the activation en-
ergy, kBT is the thermal energy, S is the Eshelby modulus
(S = 2(1 + m)l/3(1 � m) where l is the shear modulus m is
the Poisson’s raio), X is the atomic volume, and nD is
the number of diffusive jumps necessary to annihilate a
free volume equal to v*. Meanwhile, the macroscopic plas-
tic strain rate can be written as [3,21,22]:

_cp ¼ CncaHa; ð3Þ
where the net activation frequency Ha of an STZ

obeys a rate law of the form [3]: Ha ¼ m0 exp � Q�sXa
kBT

� 	h
� exp � QþsXa

kBT

� 	
�, here Q is the activation energy barrier

for an STZ under an unstressed field [30]. In addition,
the momentum balance, in the absence of body forces,
requires that [20,31]:
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where q is the mass density, and the total shear strain c
can be decomposed into elastic and plastic parts, i.e.
c = ce + cp, here the elastic strain ce obeys Hooke’s
law: ce = s/l. Eqs. (1)–(4) govern the inhomogeneous
deformation of MGs.

Shear banding, as a physically unstable event, is
investigated through a linear perturbation analysis, i.e.
seeking an inhomogeneous solution with respect to
small perturbations to the homogeneous solution. The
homogeneous solution (sh, ch, nh) satisfies osh/oy = och/
oy = onh/oy = 0. For a typical Zr41.2Ti13.8Cu12.5-

Ni10Be22.5 (Vit 1) BMG, Figure 1 shows the stress–strain

curve (black) of homogeneous deformation, along with
the concentration of free volume vs. shear strain for a
strain rate of 10�2 s�1. For small perturbations it is as-
sumed that (ds, dc, dn) = (s*, c*, n*) exp (at + iky),
where (s*, c*, n*) are small constants that characterize
the initial magnitude of the perturbation, k is the wave-
number, and a is related to the initial rate of growth.
The stability of the deformation is now determined by
the sign of the real part of a: if Re(a) < 0, the shear
deformation is stable; if Re(a) > 0, it is unstable. The
stability analysis tells immediately that the critical wave-
length that may lead to runaway instability is:

kcrit ¼ 2p
Dn

G�n

 !1=2

: ð5Þ

where G�n is the free volume coalescence rate oG/on at the
critical point of instability. Perturbations with a wave-
length smaller than kcrit will die out, whereas the ones
with a wavelength larger than kcrit will grow. Based on
the homogeneous solution (Fig. 1), we can obtain the

Figure 1. Dimensionless shear stress (black curve) and free volume
concentration (red curve) vs. shear strain for the homogeneous
deformation at a strain rate of 10�2 s�1; the peak value of free volume
concentration is denoted by n*. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of
this article.)

Figure 2. (a) Evolution of coalescence rate Gn of free volume
concentration with shear strain at a strain rate of 10�2 s�1; its peak
value is denoted by G�n. (b) The effect of applied shear strain rate on G�n
and n*.
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