

Scripta Materialia 56 (2007) 401-404

www.actamat-journals.com

Synthesis of α -Si₃N₄ using low- α -phase Si₃N₄ diluent by the seeding technique

Yun Yang, a,b Yi-Xiang Chen, b Zhi-Ming Lin and Jiang-Tao Lia,*

^aTechnical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100080, China ^bGraduate School of the Chinese Academy of Sciences, Beijing 100039, China

> Received 28 August 2006; revised 20 October 2006; accepted 30 October 2006 Available online 1 December 2006

An iterative method, called the seeding technique, was introduced into the traditional combustion synthesis process to synthesize α -Si₃N₄ powders, using low- α -phase Si₃N₄ diluent. The effect of the reaction thermodynamics and kinetics on the α -phase content of the synthesized product was discussed by calculating the conversion ratio of Si to α -Si₃N₄. The optimal conditions to obtain α -Si₃N₄ through the seeding technique have been determined.

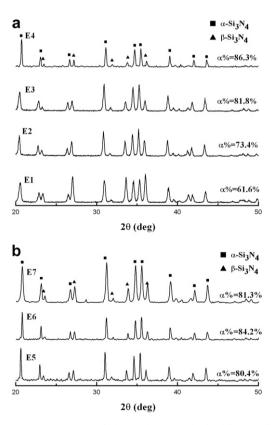
© 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Keywords: Seeding technique; Si_3N_4 ; The conversion ratio of Si to α - Si_3N_4 ; Self-propagating high-temperature synthesis (SHS); X-ray diffraction (XRD)

Combustion synthesis (CS) or self-propagating high-temperature synthesis (SHS) has proven advantages: lower energy requirement, higher product purity, simpler and cheaper equipment, and higher production rate [1]. It is well known that Si₃N₄ powders can be successfully obtained using SHS [2-4]. However, in order to improve the process and avoid incomplete nitridation, which can be a consequence higher reaction temperatures and rates, Si₃N₄ powders as diluent and ammonium salts as catalyst were added to the initial mixture. The incorporation of diluent and catalyst into the raw materials mixture affects which phase forms, as well as the phase composition of the synthesized product. Therefore, many studies have focused on the effect of the species and the amount of the diluent or catalyst added on the α-phase content of the synthesized product [5–8].

In our previous study, Si_3N_4 powders have been successfully obtained using SHS [9], and many SHS experiments have been carried out under the same process conditions of nitrogen pressure and amount of the diluent and catalyst added. It has been observed that the α -Si₃N₄ and β -Si₃N₄ phase proportion of the Si₃N₄ diluent strongly influenced the α -phase contents of the CS products. The point of this study was to investigate

the effect of the α -phase content of the Si_3N_4 diluent on the α -phase content of the CS product, and to see how reaction thermodynamics and kinetics affect the α -phase content of the synthesized product in the iterative seeding process. Based on the research, high- α -Si $_3N_4$ powders have been synthesized by the seeding technique. The seeding was based on an iterative method, and consists of using the product of previous reactions as the Si_3N_4 diluent, and adding low- α -Si $_3N_4$ powders as diluent in the first step.


Silicon powders were used as reactant. The average grain size of silicon powder is $50 \,\mu m$ and their purity is higher than $99 \,wt.\%$. Si_3N_4 powder was added as diluent, and ammonium halides (NH₄Cl or NH₄F) were added as catalytic agents.

This process involves the following steps. Silicon, Si_3N_4 powder and ammonium halides (NH₄X) were mixed at the desired proportions and thoroughly ball-milled using steel balls with a ball:powder weight ratio of 10:1. The milled mixtures were then loosely loaded into a porous graphite crucible 350 mm in length, 80 mm wide and 45 mm high. The obtained charge of 400 g per batch was placed into a high-pressure vessel. After the reactor had been evacuated and then backfilled with nitrogen to \sim 3–5 MPa, the reactant mixture was ignited and the combustion reaction occurred. Different reaction parameters, including the composition of the starting powder mixture and the α -phase content of the Si₃N₄-diluent, were employed.

^{*}Corresponding author. Tel./fax: +86 10 82543693; e-mail: ljt0012 @vip.sina.com

The α -phase contents of the CS products were analyzed by X-ray diffraction (XRD) and calculated according to Gazzara and Messier [10]. Assuming that the α -Si₃N₄ and β -Si₃N₄ phase proportion of the Si₃N₄ diluent was unchanged throughout the reaction, that is to say, conversion of α -Si₃N₄ to β -Si₃N₄ in the Si₃N₄ diluent had not occurred, the conversion ratios of Si to α -Si₃N₄ expressed as $\eta_{\text{Si}\rightarrow\alpha}$ were calculated according to the α -phase contents of the combustion synthesized products of each synthesis. The α -phase content of the Si₃N₄ diluent and the α -phase content of the CS Si₃N₄ powders are named hereafter as α -dil and α -pro.

In order to investigate the effect of the α -dil on the α -pro, seven combustion reactions, E1–E7, were carried out by means of the seeding technique. In these reactions, the composition of the reactant mixture was Si/Si₃N₄/NH₄Cl = 46.25/46.25/7.5 (weight ratio) and the process conditions were kept the same. Figure 1(a) and (b) shows the XRD patterns of the products synthesized in E1–E7. The α -pro and the $\eta_{\text{Si}\to\alpha}$ of E1–E7 were calculated and are listed in Table 1. The α -phase content of the Si₃N₄ diluent used in E1 was 44.0 wt.%.

Figure 1. XRD patterns of the products synthesized in experiments E1–E7.

According to the XRD analysis results, shown in Figure 1(a) and (b), the products obtained in E1–E7 were only α -Si₃N₄ and β -Si₃N₄, and no residual Si could be detected, which means the complete nitridation of silicon was achieved in all experiments E1–E7. The influence of the α -dil on the α -pro can be seen from Table 1. In the current system, when the α -dil was lower than 86.3%, with the increase of the α -dil, the α -pro were considerably increased, and the $\eta_{\text{Si}\to\alpha}$ showed a similar trend, from 72.1% to 89.0%. However, when the α -dil reached a higher value, both the α -pro and $\eta_{\text{Si}\to\alpha}$ decreased, as shown in E5 and E7.

The reaction of nitridation of silicon can be represented as:

$$3(1-x)Si + 2(1-x)N_2 + xSi_3N_4 \rightarrow Si_3N_4$$
.

The thermodynamic factor dQ_{Ex}/dm represents the heat per unit released from the reaction system. In this iterative seeding process, the value of dQ_{Ex}/dm for each Si₃N₄ CS process determined by the composition of the reactant mixture was the same. Based on the heterogeneous nucleation mechanism for the formation of Si_3N_4 , a higher α -dil in the reactant mixture resulted in a lower activation energy for the formation of α -Si₃N₄, which increased the combustion wave velocity and the heat per second released from the reaction system, which is expressed as dQ_{Ex}/dt . Such rapid heat release lead to an increase of combustion temperature in the reactant system. It has been reported that α -Si₃N₄ is usually synthesized at or below 1400 °C. Above this temperature, α-Si₃N₄ would be transformed to β-Si₃N₄ powders [11,12]. Therefore, with an increase in α -dil, the value of dQ_{Ex}/dt increases, and the combustion temperature of the reactant system increases up to a value that could result in the conversion of α-Si₃N₄ to β -Si₃N₄; as a result, the α -pro certainly decreases. Such a explanation can be applied to the result above, for the $Si/Si_3N_4/NH_4Cl = 46.25/46.25/7.5$ system; both the α -pro and $\eta_{Si\to\alpha}$ decrease when the α -dil increases.

Figure 2(a)–(c) shows the first derivation of the temperature profile of the CS reaction in E1, E3 and E4, respectively. It can clearly be seen that the maximum value of the rate of temperature increase $\mathrm{d}T/\mathrm{d}t$ is 13.3 in E1, 18.0 in E3 and 21.8 in E4. Correspondingly, the α -dil of the E1, E3 and E4 reactant systems increased gradually. Therefore, it can be deduced that the rise of $\mathrm{d}T/\mathrm{d}t$ signifying the increase in $\mathrm{d}Q_{\mathrm{Ex}}/\mathrm{d}t$ can be attributed to the increase in the α -dil in the reactant mixture.

In summary, the thermodynamic factor $dQ_{\rm Ex}/dm$ and the kinetic factor $dQ_{\rm Ex}/dt$ simultaneously influence the α -phase content of the synthesized product. At lower α -dil, the effect of $dQ_{\rm Ex}/dm$ is dominant, and the value of $dQ_{\rm Ex}/dm$ depends on the composition of the reactant mixture affecting the $\eta_{\rm Si\rightarrow\alpha}$ and its increment in each iterative CS reaction. However, with as α -dil increases, the

Table 1. The data of reactions in experiments E1–E7

Experiment	E1 %	E2 %	E3 %	E4 %	E5 %	E6 %	E7 %
α -Phase content of the Si ₃ N ₄ diluent (α -dil)	44	61.6	73.4	81.8	86.3	80.4	84.2
α-Phase content of the synthesized Si ₃ N ₄ powders (α-pro)	61.6	73.4	81.8	86.3	80.4	84.2	81.5
Conversion ratio of Si to α -Si ₃ N ₄ ($\eta_{Si\rightarrow\alpha}$)	72.1	80.5	86.8	89.0	76.9	86.5	80.0

Download English Version:

https://daneshyari.com/en/article/1501770

Download Persian Version:

https://daneshyari.com/article/1501770

<u>Daneshyari.com</u>