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Abstract

The effective-mean-field (EMF) theory, consisting of Mori–Tanaka�s mean-field theory and Bruggeman�s effective medium approxi-
mation, was extended in order to calculate the coefficients of thermal expansion (CTE) of composite materials. The effective elastic
constants and CTE of lotus-type porous metals, possessing cylindrical pores aligned unidirectionally, were evaluated with the EMF
theory.
� 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Most of the metals such as Cu, Mg and Fe possess the
solubility gap of hydrogen at the melting point, i.e., hydro-
gen solubility discontinuously decreases with solidification.
When such metals solidify under hydrogen atmosphere, the
solubility gap yields the formation of numerous pores at
the solid/liquid interfaces. For unidirectional solidification,
the pores grow unidirectionally along the solidification
direction. By utilizing this principle, Nakajima et al. have
succeeded in fabricating lotus-type porous metals possess-
ing cylindrical pores aligned unidirectionally (Fig. 1) [1–3].
Previous studies have revealed that the specific strength
of lotus-type metals, in the direction parallel to the longitu-
dinal axis of the pore, holds despite the presence of the
pores [4,5]. Thus, the mechanical properties of lotus-type
metals are superior to those of conventional porous metals
possessing isotropic pores. Furthermore, the aligned long
pores allow the permeability of fluid, and micron-size pores
enlarge the surface area. These unique characteristics bring
applications in various fields. When lotus-type metals are
used as structural or high temperature components, the

elastic constants and the coefficients of the thermal expan-
sion (CTE) are needed to be clarified. The detailed under-
standing of them involves the clarification of the effects
such as the pore shape and porosity.

Many researchers have proposed methods for calculat-
ing the elastic and thermoelastic properties of composite
materials including porous materials [6–9]. Hashin and
Shtrikman [10] have derived theoretical upper and lower
bounds for the effective elastic constants, and the combina-
tion of Hashin–Shtrikman�s (HS) bounds and Levin�s
relation [11] gives the bounds for the effective CTE [12].
However, these bounds cannot be derived analytically
except in some special cases. Taya et al. [13,14] have
proposed the method based on Eshelby�s inclusion theory
[15] and Mori–Tanaka�s mean-field (MTMF) theory [16].
This method provides the effective elastic constants and
CTE with the shape, alignment, and volume fraction of
inclusions taken into account [17,18]. However, this
method cannot give accurate values when the volume frac-
tion of inclusions is high. This is because the far-field
approximation in MTMF theory cannot sufficiently take
account of elastic interaction among inclusions in the
high-fraction region [19]. Recently, in order to overcome
this problem, Tane and Ichitsubo [20] have proposed
the effective-mean-field (EMF) theory by combining
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Bruggeman�s effective medium approximation [21] and
MTMF theory. This theory provides the effective elastic
constants with high accuracy even when the inclusion frac-
tion is high. However, the EMF theory has been applied
only to the elastic problem until now.

In this paper, we extend the EMF theory to the thermo-
elastic problem in order to calculate the CTE of composite
materials (including porous materials). First we introduce
the EMF theory for the effective elastic constants of com-
posite materials, and then newly derive the theory for
calculating the effective CTE of composite materials on
the basis of the EMF theory. Next, we examine the validity
of the theory for the elastic constants and CTE by compar-
ing the theory to theoretical upper and lower bounds.
Finally, we evaluate the elastic constants and CTE of
lotus-type porous metals on the basis of the EMF theory,
and discuss their elastic and thermoelastic properties.

2. Effective-mean-field theory

2.1. Theory

2.1.1. Elastic constants

A composite material consists of a matrix and one type
of inclusions, whose volume fraction is denoted by fM and
fI(=1 � fM), respectively. The equations, �r ¼ fM�rM þ fI�rI

and �� ¼ fM��M þ fI��I, express the spatial averages of the
stress and strain in the composite material, where
�rM ¼ CM��M and �rI ¼ CI��I; CM and CI denote the elastic
constants of the matrix and inclusion, respectively. (Bold
face capitals represent 6 · 6 matrices, and bold face Greek
characters represent 6 · 1 vectors.) Then, �r ¼ C�� defines
effective elastic constants of the composite material, C

[22]. The definition of A as ��I ¼ A��M provides the effective
(macroscopic) elastic constants [23]:

C ¼ ðfMCM þ fICIAÞðfMIþ fIAÞ�1
; ð1Þ

where A is the strain concentration factor and I is the unit
matrix.

The combination of Eshelby�s equivalent inclusion
theory [15] and MTMF theory [16] gives A as follows.

First, when a homogeneous substance suffers an external
stress rext, the stress field inside the substance is given by
rext = CM�M; CM denotes the elastic constants and �M
denotes the (uniform) strain. Next, when an infinitesimal
isolated inclusion is added to the substance, the internal
stress inside the isolated inclusion with CI is given by

rI ¼ CI�I ¼ CIð�M þ cÞ ¼ rext þ r1; ð2Þ

where r1 and c represent extra internal stress and strain
caused by the elastic inhomogeneity. When the inclusion
is ellipsoidal, Eshelby�s theory [15] provides rI using the
eigen strain of ‘‘an equivalent inclusion’’, �*:

rI ¼ rext þ r1 ¼ CMð�M þ c� ��Þ; ð3Þ

where the extra strain c is given by c = S�*. The terms S is
Eshelby tensor depending on the matrix elastic constants
and inclusion shape [15]; its matrix notation is given by
Pedersen [24]. From Eqs. (2) and (3), the expression of r1

can be obtained: r1 = CM(c � S�1c). We next consider a
composite material possessing finite concentration of inclu-
sions. TheMTMF theory [16] expresses the average internal
stress of inclusions, using r1 for an isolated inclusion, as

�rI ¼ �rM þ r1; ð4Þ

which leads to the following equation:

CI��I ¼ CM��M þ CMðc� S�1cÞ. ð5Þ
Here, the expression of A as ��I ¼ ��M þ c ¼ A��M and substi-
tution of this equation into Eq. (5) yield A:

A ¼ ½SC�1
M ðCI � CMÞ þ I��1. ð6Þ

As shown in Eqs. (4) and (5), MTMF theory regards the
nonuniform stress field in a matrix as the uniform one of
the average stress, and derives the stress inside the inclu-
sions by utilizing the solution for an isolated inclusion.
When inclusions in composite materials are apart from
one another, i.e., the volume fraction of inclusions is low,
this approximation is valid [19]. However, the approxima-
tion cannot sufficiently take account of the elastic interac-
tion among inclusions in the high-fraction region.

The EMF theory, consisting of MTMF theory and effec-
tive-medium approximation, deals with the elastic interac-
tion as follows. The inclusions of low fraction DfI are
added into a composite material suffering the external force
rext; the inclusion fraction of the pre-existence composite
material is nDfI. Then, the effective medium approximation
takes account of the interaction between the added inclu-
sions and the pre-existence inclusions. First, the composite
material with inclusions of nDfI is regarded as the homoge-
neous matrix (effective medium) with the effective elastic
constants of CðnÞ on the basis of the effective-medium
approximation. Next, the low fraction of the added inclu-
sions allows the MTMF theory to adequately express the
average stress inside the added inclusions, rI(n):

CI��IðnÞ ¼ CðnÞ��MðnÞ þ r1
ðnÞ; ð7Þ

Fig. 1. Microstructures of (a) transverse section perpendicular to the
longitudinal pore direction and (b) longitudinal section parallel to the pore
direction for lotus-type porous copper, and the coordinate system of the
specimen.
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