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Dislocation bends in a film/substrate heterostructure
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Threading dislocations in thin-film/substrate heterostructures interact elastically with the free surface. In the case of a plastically
relaxed heterostructure Sig 6gGeg 3,/Si(001), and thanks to a new contrast simulation programme, it is shown that the short skew
emerging legs of the threading dislocations are of screw character, which explains the easy production of 60° interfacial dislocations

by multiple cross-slips of the emerging legs.
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Different techniques, including transmission elec-
tron microscopy (TEM) and transmission or reflection
X-ray topography, are used to observe the formation
of the first dislocations in heteroepitaxial systems
formed by the deposition of a small amount of crystal-
line matter onto a single crystalline substrate (e.g.
[1,2]). They are produced from the glide of threading
dislocations (TDs) to accommodate as much as possible
the lattice mismatch between the two crystals and there-
fore to decrease the total elastic energy stored in the sys-
tem by the interfacial coherency between the film and
the substrate.

For cubic to cubic heterostructures, according to the
growth mode adopted by the system (layer by layer, or
the Volmer—Weber or Stranski-Krastanov regime), the
interfacial legs of these TDs can have Burgers vectors
of types 1/2(110) and 1/6(112). With respect to a
(110) interfacial dislocation direction, these vectors
are oriented either at 30° (Shockley partials, e.g. [3]),
60° (e.g. [2]) or 90° (e.g. [4]), mostly identified from
high-resolution TEM observations. In the film, TDs
can glide in planes different from the usual {111} planes
[5] or have line directions not contained in these planes,
as shown by some high-resolution or stereo TEM obser-
vations [6]. They can also glide in the substrate of a flex-
ible specimen [2,7].
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For Si ¢3Geg 3/(001)Si films [8,9], threading disloca-
tions have been shown to be generated from isolated
surface dislocation sources under the form of successive
dislocation half-loops gliding in the usual {111} planes.
However, for a Siy¢7Geg33/(001)Si super-lattice [6], it
was shown that the non-interfacial TD segments are
not contained in the usual {111} slip planes but can
have directions almost parallel to the [001] zone axis.

The variety of these results and the need to identify
very short dislocation legs near the free surface of a het-
erostructure observed in a plan-view specimen in TEM
led the present authors to built a new investigation tool.
More precisely, the identification of the TDs is desirable
because the interfacial and emerging legs of a TD can
have image contrasts very sensitive to the proximity of
a free surface, which makes the application of the com-
mon invisibility criterion [10] rather controversial for
both legs of the TD in a very thin-film. In an attempt
to gain a better insight into their contrasts, the present
authors have built a devoted programme that constructs
computer-aided images. It is able to account for the
measured geometry of a TD and tests all possible Bur-
gers vector of the TD. It uses image matching from
two-beam experimental TEM images, as proposed long
ago [11,12].

Since the elastic field of a curved dislocation piercing
the free surface seems intractable analytically [13], a sim-
plified geometry is adopted hereafter: the TD is assumed
to be undissociated and composed of two straight dislo-
cations legs. This prerequisite is not restrictive for a
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semi-conductor system since dislocation segments are

very commonly observed to lie along directions (110)

(see e.g. [9,14-17]). In addition, its elastic field only re-

laxes at the upper surface of the thin foil. The interfacial

leg is semi-infinite, while the short leg in the film pierces
the upper surface on the skew at any direction. Numer-
ical applications apply to dislocation bends in the

Si0.68G60_32/Si(00 1) system.

Figure 1 is a schematic drawing which represents a
TD composed of a straight interfacial semi-infinite leg,
TO, and a short leg oriented OD, piercing the free sur-
face on the skew. The free surface normal, N, is oriented
from inside to outside the material, supposed elastically
homogeneous and isotropic (u is the Young modulus, v
the Poisson ratio). The Burgers vector associated to the
dislocation bend TOD is denoted b. The elastic displace-
ment field u of this dislocation is not available in the
literature, but can be obtained from the superposition
of some elastic equilibria relative to the semi-infinite
material. The principle is to sum the elastic field of three
appropriate dislocations with Burgers vectors equal to
+b:

— A semi-infinite dislocation piercing the free surface at
point D. Its orientation is along FOD and its Burgers
vector is b. Its displacement field is explicitly given in
Refs. [18,19].

— An angular dislocation TOG oriented by its interfacial
leg TO with a leg GO parallel to N. Its Burgers vector
is also b. Its angle at the apex O is equal to w/2.

— An angular dislocation FOG oriented by its leg OG
parallel to —N. Its Burgers vector is —b. Its angle at
the apex O, smaller than m/2, is determined by the
crystallographic direction of the leg FO, i.e. that of
the short emerging segment OD.

Figure 1 shows that the two superimposed legs along
FO (respectively GO) do not contribute to the elastic
field since their line orientations and their Burgers vec-
tors are opposed. As a result, this addition leads to the
elastic field of the dislocation bend TOD. The problem
reduces consequently to the evaluation of the two angu-
lar dislocations TOG and FOG, which have a leg paral-
lel to N.

As shown below, each of them can be explicitly writ-
ten from a solution proposed by Comninou and Dun-
durs [20]. These authors actually discovered a way to
find the displacement field u™ of an angular dislocation
for the peculiar case of a leg parallel to N and an apex
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Figure 1. Representation of a dislocation bend TOD in a layer/
substrate system. The thin half arrows indicate the line orientations of
dislocations FOD, TOG and FOG. The dislocation legs along FO and
OG are superimposed.

angle less than or equal to n/2. Briefly, the logic is as
follows. First, they consider an infinite material and a
plane P with a normal N. They insert a first angular dis-
location with a Burgers vector b and its mirror image
with respect to plane P. The first angular dislocation
should have a leg perpendicular to P but not crossing
it. Then, they apply Yoffe’s expressions [21] to obtain
the resultant elastic field. However, since non-zero
normal stresses remain along the mirror plane P, extra
terms are added to find the field u™. These terms are
found from the use of appropriate harmonic functions
specific to each component of the Burgers vector b.

Therefore, for the dislocation bend TOD in Figure 1,
the total u field is obtained by adding:

— Once, the elastic field of a semi-infinite dislocation

[18,19].

— Four times, that of an angular dislocation in an infinite
material [21].
— Twice, the extra terms calculated in Ref. [20].

Since the expressions in Refs. [18-21] are fairly long
to write, they could contain typographical errors. For
safety, we have tested them numerically and found some
errors not yet outlined in the literature (to the authors’
knowledge). Adapted corrections are available to inter-
ested readers.

The computation of a simulated image of a TD is per-
formed in the assumption of a bright-field two-beam
condition. The principle of the technique is well known
since the pioneer works of Hirsch et al. [10] and Head
et al. [11,12] on the straight dislocations: the Howie—
Whelan equations [22] are numerically integrated over
the foil thickness crossed by the electron beam and the
intensity is recorded in close nodes included in the
perimeter of the simulated image. A grey scale then
transforms the intensity into an image, the resolution
of which depends on the spacing between two consecu-
tive nodes.

The main difficulties in this sort of question are (i) to
obtain the displacement field u attached to the defect
with the best possible approximation; and (ii) to be able
to calculate explicitly the p’ function to insert into the
Howie—-Whelan equations. This latter point was the
most tedious part of the present work since this function
depends on the nine derivatives of the three-dimensional
u field and on the tilting angles of the thin foil via the
diffracting vector g. The f’ function is calculated in the
same frame OX;X,X3 as in Ref. [23], except that the ori-
gin O is chosen here as the apex of the TD: the axis OX,
is directed towards the screen, while the axis OXj is cho-
sen along the projection onto the screen of the crystallo-
graphic direction of the dislocation leg OD. The axis
OX, is chosen opposite to the crystallographic orienta-
tion of the beam, denoted BM. In a simulated image,
0OXj is directed from bottom to top. A simulated image
includes the projections the two dislocation legs and is
limited by a parallelogram with sides parallel to the
two dislocation legs.

To obtain a good resolution, each simulated image is
constructed as the sum of 80 x 80 adjacent small paral-
lelograms. Inside each small parallelogram the grey
intensity is assumed to be constant, as computed at
the centre of the parallelogram via the Runge-Kutta—
Merson procedure [24]. This method has already been
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