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a b s t r a c t

Gene regulatory networks account for the delicate mechanisms that control gene expression. Under
certain circumstances, gene regulatory programs may give rise to amplification cascades. Such trans-
criptional cascades are events in which activation of key-responsive transcription factors called master
regulators trigger a series of gene expression events. The action of transcriptional master regulators is then
important for the establishment of certain programs like cell development and differentiation. However,
such cascades have also been related with the onset and maintenance of cancer phenotypes. Here we
present a systematic implementation of a series of algorithms aimed at the inference of a gene regulatory
network and analysis of transcriptional master regulators in the context of primary breast cancer cells.
Such studies were performed in a highly curated database of 880 microarray gene expression experi-
ments on biopsy-captured tissue corresponding to primary breast cancer and healthy controls. Biological
function and biochemical pathway enrichment analyses were also performed to study the role that the
processes controlled – at the transcriptional level – by such master regulators may have in relation to
primary breast cancer. We found that transcription factors such as AGTR2, ZNF132, TFDP3 and others
are master regulators in this gene regulatory network. Sets of genes controlled by these regulators are
involved in processes that are well-known hallmarks of cancer. This kind of analyses may help to under-
stand the most upstream events in the development of phenotypes, in particular, those regarding cancer
biology.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Cancer is a pathway-disease (Hanahan and Weinberg, 2000).
The main hallmarks of cancer are associated to the action of
pathways related to cell proliferation, apoptosis evasion, cell dif-
ferentiation and in general, to the dysregulation of cell cycle and
the alteration of DNA-repairing processes (Hanahan and Weinberg,
2000, 2011). The phenotype of a cell is determined by the activity
of a large number of genes and proteins (Basso et al., 2005). Hence,
transcriptional regulation lies at the heart of many of the intricate
molecular relationships driving the activity of biological pathways
(Emmert-Streib et al., 2014).

It has been observed that a number of large scale trans-
criptional cascades behind such complex cellular processes are
actually triggered by the action of a relatively small number of
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transcription factor molecules that have been called Transcriptio-
nal Master Regulators (TMRs) (Han et al., 2004; Sun-Kin Chan and
Kyba, 2013; Mullen et al., 2011). It has been argued that these genes
control the entire transcriptional regulatory program for specific
cellular phenotypes (in eukaryotic cells; Han et al., 2004; Basso
et al., 2005; Affara et al., 2013). However, TMRs are also able to
act on general cellular processes at the same time (Hinnebusch and
Natarajan, 2002; Medvedovic et al., 2011; Affara et al., 2013). A
proper understanding of the organization of these TMR-mediated
highly-regulated events is thus crucial to elucidate normal cell
physiology as well as complex pathological phenotypes (Basso
et al., 2005).

Given the complex mechanisms underlying transcriptional reg-
ulations on eukaryotes, the identification of TMRs is often based
on the (inferred or observed) relationship among them and their
cascade of RNA targets in gene regulatory networks (Hernández-
Lemus and Siqueiros-García, 2013). Being a primary upstream
event in the cell regulatory program, dysregulation of TMRs may
have a high impact on cancer-related phenotypes, since under
genetic instability conditions, uncontrolled synthesis of these
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molecules could originate the activation/amplification of several
transcriptional cascades (Basso et al., 2005; Baca-Lopez et al., 2014;
Baca-López et al., 2012).

A TMR is a transcription factor (TF) that is expressed at the early
onset of the development of a particular phenotype or cell type
(Sun-Kin Chan and Kyba, 2013). It also participates in the speci-
fications of such a phenotype by regulating multiple downstream
genes, either directly or by means of genetic cascades. Transcrip-
tion factors are hence key cellular components that control gene
expression: their activities may determine how cells function and
respond to the environment (Vaquerizas et al., 2009).

Transcription factors may act in two opposite directions: either
activating or repressing transcriptional activity of their targets.
Based on the initial estimations of the whole human genome
sequence, it was calculated that the transcriptional machinery
could be composed of 200 to 300 genes and there could exist
between 2000 to 3000 specific union sites for transcription factors
(Lander et al., 2001; Venter et al., 2001). In Vaquerizas et al. (2009)
it is stated that in the http://amigo.geneontology.orgGene Ontol-
ogy database 1052 TFs were defined and just 6% (62 cases) of them
had experimental corroboration. Six years later, the same database
recognized 1846 TFs and 14% (260) of them had experimental evi-
dence. This is indicative of the fast progress on documenting the
transcription mechanisms, but this also points to the overwhelming
complexity of the mechanisms of genomic control.

Implementation of computational methods to identify and ana-
lyze TMRs is relevant in the context of breast cancer, particularly
at its earliest stages. We have probabilistically inferred the gene
regulatory network associated with this phenotype, then a com-
putational analysis has uncovered its active TMRs in the context
of primary breast cancer. In our study we have considered such
an analysis, as well as the resulting TMR-related phenomena in
the context of transcriptional regulatory programs. We also dis-
cuss here some of the implications of our results in breast cancer
biology. The article is structured as follows: Section 2 presents
an overview of the materials and methods used in this work. This
includes both the experimental datasets used, the network infer-
ence strategy and the molecular signature analysis, as well as the
algorithm for the discovery of transcriptional master regulators.
Section 3 presents some of the main results of the application of
this pipeline in primary breast cancer microarray gene expression
data. Finally, Section 4 presents some conclusions mainly related
with the advantages of implementing a method such as MARINa
(Lefebvre et al., 2010) in order to unveil some aspects of regulatory
control that may lie behind the establishment of tumor phenotypes.

2. Materials and methods

2.1. Experimental datasets

For the analysis presented here, we obtained 880 microar-
ray expression profiles from several experimental datasets that
are available on the Gene Expression Omnibus site (http://www.
ncbi.nlm.nih.gov/geo/GEO) (Edgar et al., 2002). All experiments
were performed by using total mRNA on the microarray platform
Affymetrix HGU133A (GPL96), which consists of 18,400 transcripts
and variants, including 14,500 well-characterized human genes
(Liu et al., 2003). From the total 880 samples, 819 correspond to
primary breast cancer tissue, whereas the remaining 61 samples
correspond to healthy breast tissue. In the case of experiments that
included any kind of treatment or cell modification, we only used
the unaltered samples (see Table 1).

A second dataset for comparing the results was obtained from
The Cancer Genome Atlas (TCGA, http://cancergenome.nih.gov/).
We used 597 mRNA samples of invasive breast cancer, of which 534
correspond to tumor samples and the other 63 were non-tumor. All

data used for this analysis correspond to level 3, which means they
are already normalized.

2.2. Batch effect control

Batch effect is one of the most recurrent factors of error dur-
ing data analysis from microarrays (Grass, 2009). Chen et al.
(2011) tested six different algorithms to eliminate batch effect and
found that the best results were obtained by using the empiri-
cal bayesian method known as ComBat (Combating Batch Effects
When Combining Batches of Gene Expression Microarray Data)
(Johnson et al., 2007). However, since seven out of the ten datasets
corresponded to tumor tissue exclusively (i.e. there are no con-
trol samples), and the three remaining datasets had only healthy
tissues, there is no intersection between those datasets. Accord-
ing to Leek et al. (2010), treatments and batches are completely
confounded. Since currently there is no method to estimate the
batch effect under these conditions (Leek et al., 2010), ComBat
(Johnson et al., 2007) cannot perform the normalization of the
whole dataset. Taking into account that ComBat does not elimi-
nate batch effect with the conditions of our dataset, we decided
to partially solve this issue as follows: After preprocessing all
arrays with frma (McCall et al., 2010), and using summarization
with robust weighted average with no background correction, we
split the datasets into cases/controls, and then applied ComBat to
both datasets separately. After that, we re-joined the two result-
ing datasets and re-normalized them together with the cyclic loess
algorithm (Ballman et al., 2004), in such way that both conditions
belong now to the same dynamic range

We needed to have a measure of the batch effect within the sam-
ples so that we could remove the corresponding bias as accurately
as possible. To this end we resort to Principal Variance Component
Analysis (PVCA) that is an algorithm that combines the advantages
of the principal component analysis (reduction of dimensionality)
with the components of the analysis of variance (Grass, 2009). Once
the batch effect is reduced separately, a PVCA analysis corroborated
that such a batch effect almost disappeared and the treatment effect
was important enough. (Fig. 1).

Given our design conditions, it was not possible to elimi-
nate batch effect completely. Since batch effect in such mixed
experimental designs is an important topic of current research in
computational genomics, we can envisage a scenario in which the
present work may be revisited and some of its conclusions may
need to be revised. In the meantime, the method described above
aimed at reducing and estimating batch effects may be considered
a first approximation for the purposes of the work presented here.

For the TCGA dataset, since we analyzed data level 3 samples,
normalization had already been performed by the TCGA site. For
batch effect correction, the data were computed using ComBat
(Johnson et al., 2007), Median Polish and ANOVA.

2.3. Network inference

Gene regulatory networks (GRN) are models that describe the
relationship between genes under certain given conditions. Net-
work inference can be defined as the process of identifying gene
interactions from experimental data by performing a computa-
tional analysis (Bansal et al., 2007). To infer the breast cancer
transcription factor regulatory network (interactome), we pro-
ceeded as follows. First, we generated a network for every known
human TF in the primary breast cancer gene expression dataset
by using the Algorithm for the Reconstruction of Accurate Cellu-
lar Networks (ARACNE) (Basso et al., 2005; Margolin et al., 2006).
ARACNE is a computational algorithm widely used to identify
statistical relationships among genes, by calculating the mutual
information (MI) between gene pairs from microarray expression
data (Basso et al., 2005; Margolin et al., 2004).
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