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The fracture strength of an elastic-brittle, centrally cracked plate made from a diamond-celled lattice is calculated by finite
element simulations. Conventional linear elastic fracture mechanics applies when the crack length much exceeds the cell size. But
when the crack is only a few cell sizes, the stress concentration at the crack tip is negligible and the strength is comparable to
the unnotched strength. An analytical model is derived for the fracture toughness.
� 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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Ceramic honeycombs with the square cells shown in
Figure 1 are commonly used in catalytic converters and
in particulate filters for automobiles. Ceramic foams and
honeycombs also find application as filters for liquid
metal due to their high chemical stability up to a high
temperature. More recently, ceramic lattice materials
and other types of brittle honeycombs have also been
developed for bioengineering purposes, such as pros-
thetic scaffold implants. Tailoring the porosity of these
structures allows for ingrowth of new bone tissue and
also reduces problems associated with the mismatch of
elastic properties. The brittle nature of ceramic honey-
combs, together with the severe thermal shock and
mechanical loads to which they are subjected, makes
their damage tolerance a concern.

Early work on the fracture behaviour of brittle
honeycombs made use of linear elastic fracture mechan-
ics (LEFM) concepts to estimate the fracture toughness
of a hexagonal honeycomb [1]. The stress field of an
equivalent linear elastic continuum was used to calculate
the stresses on the cell walls of the lattice directly ahead
of the crack tip. The macroscopic fracture toughness
was estimated by assuming that the critical strut directly
ahead of the crack tip fails when the maximum tensile
stress within it attains the fracture strength rf. These
ideas were extended and refined by Huang and Gibson
[2] for hexagonal and diamond-celled honeycombs to
account for the statistical nature of the modulus of rup-
ture rf of the cell-wall material. Huang and Gibson con-

cluded that the fracture toughness of the diamond-celled
honeycomb scales as KIC / (t/‘)2, where t is the thick-
ness of each strut and ‘ is its length. We shall reassess
this result below for the diamond-celled honeycomb.

Recently, Fleck and Qiu [3] have made numerical and
analytical predictions for the fracture toughness of sev-
eral isotropic honeycombs: hexagonal, triangular and
Kagome. They considered both semi-infinite cracks
and finite cracks within a centre cracked panel. In the
absence of a crack, the panel (with diamond-celled
honeycomb microstructure) has an unnotched tensile
strength ru which scales with the tensile strength of
the solid rf and with the ratio �t ¼ t=‘, according to [4]:

ru ¼
2

3
�t2rf : ð1Þ

Now introduce a macroscopic crack into the honey-
comb. At long crack lengths, the strength is dictated
by the criterion of linear elastic fracture mechanics,
KI = KIC, where KI is the applied mode I stress intensity
factor and KIC is the mode I fracture toughness of the
lattice material. Fleck and Qiu [3] showed that the tran-
sition in behaviour from strength-control to toughness-
control occurs at the transition flaw size of aT ¼
K2

IC=pr2
u, in agreement with previous studies on fully

dense specimens (see e.g. the review by Fleck et al. [5]).
In the present study, we explore the tensile fracture

response of a centre-cracked plate (CCP) made from a
diamond-celled honeycomb (Fig. 1). The plate contains
a crack of length 2a and the honeycomb is made from a
solid of Young’s modulus Es and tensile fracture
strength rf. The diamond-celled lattice (sketched in
Fig. 2) is characterised by its cell size ‘, wall thickness
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t and core angle x (only square cells of x = 45� are con-
sidered in this study). The cell wall material is assumed
to be linear elastic up to fracture. The relative density
of the diamond-celled lattice as defined by the density
of the lattice divided by that of the solid from which
the cell walls are made is given by

�q ¼ t
‘

2� t
‘

� �
: ð2Þ

Throughout this study, the cell size ‘ is held constant
and we evaluate the sensitivity of the macroscopic
strength to relative density, as parameterised by
�t ¼ t=‘, and to the relative crack length a/‘. The speci-
men width W and height H are taken to be sufficiently
large in relation to the crack length for specimen size
effects to be negligible. Consequently, the K-calibration
for the homogeneous, orthotropic CCP can be taken as
K ¼ r1

ffiffiffiffiffiffi
pa
p

.
The outline of the paper is as follows. An analytic

estimate for the fracture toughness of the lattice KIC is
derived. The dependence of notched strength of the
CCP is explored for a wide range of t/‘ and a/‘ by the
finite element (FE) method. The notched strength is
compared with the unnotched strength at short crack
lengths, and with the LEFM prediction at long crack
lengths. The role of the T-stress in influencing the frac-
ture strength is also addressed.

Consider the cracked lattice shown in Figure 2. As-
sume that the bar immediately ahead of the crack tip
is the critical bar of the lattice: it fails first. Further, as-
sume that it deforms as a built-in beam, as sketched in
Figure 2. The clamping moment M on this bar is

M ¼ 1

2
Es

t3

‘2
uT; ð3Þ

where the transverse displacement, uT, is related to the
crack tip opening displacement, d, evaluated at a dis-
tance x0 ¼ ‘=

ffiffiffi
2
p

from the crack tip according to

uT ¼
dðx0 ¼ ‘=

ffiffiffi
2
p
Þ

2
ffiffiffi
2
p : ð4Þ

Recall that the crack tip opening displacement of an
equivalent orthotropic continuum is given [6] by

dðx0Þ ¼ 8ffiffiffiffiffiffi
2p
p CKI

ffiffiffiffi
x0
p

; ð5Þ

where the elastic coefficient, C, for an orthotropic solid
is given in Ref. [7]. For the orthotropic lattice under
consideration, C is given by

C ’ 1ffiffiffi
2
p

Es�t2
: ð6Þ

Now assume that this critical beam fails when the local
bending stress of rA = 6M/t2 attains the fracture
strength of the cell wall material rf. Consequently, from
Eqs. (3)–(7), we obtain

KIC ¼ brf�t
ffiffi
‘
p
; ð7Þ

where the numerical constant b = 1/2. Numerical inves-
tigations [N.E. Romijn and N.A. Fleck, private commu-
nication] confirm the scaling of Eq. (11) with only a
minor correction to the constant b of b = 0.44. Note
that the linear dependence of KIC upon �t contrasts with
the quadratic dependence for hexagonal honeycombs
[1,3], and with the dependence argued previously by
Huang and Gibson [2] for a diamond-celled honeycomb.

A simple analytical estimate can be made for the tran-
sition flaw size aT, at which the notched strength of the
CCP switches from the unnotched value ru to the
LEFM value

rc ¼ KIC=
ffiffiffiffiffiffi
pa
p

: ð8Þ
The transition length follows from Eq. (7) as

a
‘
¼ 9

16p
1
�t2
: ð9Þ

Note that the transition length scales as ‘, but is very
sensitive to �t. At small �t, such as 1%, we have a long
transition crack length, aT = 1790‘.

Finite element simulations have been performed to
determine the fracture strength rc of elastic-brittle
CCP made from a diamond-celled honeycomb. The
commercial finite element code ABAQUS (version 6.5-
3) was used. Each strut in the lattice was modelled by
a two-noded Euler–Bernoulli beam element (element
type B23 in ABAQUS notation), which uses cubic inter-
polation functions and accounts for both stretching and
bending deformation but neglects shear deformation.
Two ways of introducing a crack into the lattice have
been considered (Fig. 3). Crack morphology I has
broken bars on each face of the crack (see Fig. 3a).
Crack morphology II has intact bars but the joints are
split on the crack plane (see Fig. 3b).

The net-section strength rc of the CCP is plotted
against ð�t2a=‘Þ in Figure 4. This net strength has been
normalised by the unnotched strength of the lattice

Figure 2. Sketch of the crack tip showing the idealised model of the
deformation.

Figure 1. Centre cracked plate (CCP) made from a diamond-celled
lattice and subjected to uniaxial tension.
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