FISEVIER

Contents lists available at ScienceDirect

Solid State Sciences

journal homepage: www.elsevier.com/locate/ssscie

Preparation, characterization and magnetic properties of the $BaFe_{12}O_{19}$ @ chitosan composites

Lei Li ^a, Zunju Zhang ^b, Yu Xie ^{c, *}, Jie Zhao ^{c, **}

- ^a Qinhuangdao Branch School, Northeast Petroleum University, Qinhuangdao 066004, PR China
- ^b Environmental Management College of China, Qinhuangdao 066004, PR China
- ^c College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China

ARTICLE INFO

Article history:
Received 6 December 2014
Received in revised form
25 April 2016
Accepted 14 May 2016
Available online 15 May 2016

Keywords: Composite materials Magnetic materials Oxides Chemical synthesis Magnetic properties

ABSTRACT

The BaFe $_{12}O_{19}$ @ chitosan composites are synthesized by the crosslinking reaction through chitosan and glutaraldehyde onto the surface of BaFe $_{12}O_{19}$. The structures of the samples were characterized by Fourier transform infrared spectroscopy and X-ray diffraction. The shape and size were observed by scanning electron microscopy and transmission electron microscopy. These results showed that chitosan has been decorated onto the surface of BaFe $_{12}O_{19}$, and the chitosan-glutaraldehyde Schiff-base composites have also been formed within the chitosan layers. Then, the magnetic properties of the samples were tested with the vibrating sample magnetometer. The magnetic saturation (M_S), residual magnetization (M_r) and coercive force (H_c) values of the BaFe $_{12}O_{19}$ @ chitosan Schiff-base composite have achieved 44.94 emu/g, 27.82 emu/g and 3580.7 Oe, respectively. Compared with single BaFe $_{12}O_{19}$, the M_S , and M_r of the BaFe $_{12}O_{19}$ @ chitosan composites decreases 12.31 emu/g and 8.58 emu/g, respectively. Finally, based on the experimental results, the probable formation mechanism of this composite has been investigated.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

Recent years, studies of the magnetic properties of ferrite materials have drawn more and more attentions [1–3]. Among the magnetic materials, $BaFe_{12}O_{19}$ has become a research hotspot [4–7]. Some studies have indicated that $BaFe_{12}O_{19}$ can be widely applied to magnetic fluids [8], electromagnetic microwave absorber [9,10], high frequency devices [11,12] and density perpendicular recording media [13]. These applications benefit from the high curie temperature, large M_s , magneto-crystalline anisotropy, good corrosion resistivity and excellent chemical stability of $BaFe_{12}O_{19}$ [14,15]. However, the application of $BaFe_{12}O_{19}$ in microwave absorption has been limited due to its high-density, lower dielectric loss, narrow absorption bands and so on [16].

In electromagnetic fields, Schiff-base has been attracted widely interests [21–23] due to its lower density, easier processing, wider absorption bands as well as excellent microwave absorbing properties [24–29]. Chitosan, as the most abundant natural amino

polysaccharide, possesses significantly cost-effectiveness, environmentally friendly and inherent chirality, and has become an important material to synthesize Schiff-base [17–20]. As an additive of electromagnetic composites, chitosan Schiff-base can adjust the permittivity and permeability of composites, and enhance the composites' electromagnetic loss. In this work, we firstly design and synthesize the BaFe $_{12}O_{19}$ @ chitosan composites. The preparation, characterization and magnetic property analysis of the BaFe $_{12}O_{19}$ @ chitosan composites are as follows.

2. Experimental

2.1. Materials

 ${\rm BaFe_{12}O_{19}}$ was synthesized by the sol-gel method [30]. Chitosan (with a degree of deacetylation > 90.0%) was purchased from Sinopharm Chemical Reagent Co. Ltd., and other chemicals were all analytical grade.

2.2. Synthesis of the BaFe₁₂O₁₉ @ chitosan composites

2.0 gr chitosan was dissolved into 50 mL diluted acetic acid

^{*} Corresponding author.

^{**} Corresponding author.

E-mail addresses: yu_xie1234@163.com (Y. Xie), jiezhaoyjs@163.com (J. Zhao).

Fig. 1. The proposed preparation scheme of the $BaFe_{12}O_{19}$ @ chitosan composites.

(pH = 1). Then 2.0 gr BaFe $_{12}O_{19}$ was added into above the solution with ultrasonic treatment for 0.5 h. After that, 10 mol/L NaOH solution was slowly dropwise added into the above the solution with the pH value of 13. The mixture was heated to 60 °C. Then, 0.5 mL of the 25% glutaraldehyde were added into the mixture stirring for 2 h. Finally, the precipitate was filtrated and washed by deionized water, ethanol, acetone, respectively. The product was obtained under vacuum at 50 °C for 12 h.

2.3. Characterization

Fourier transform infrared (FTIR) spectra was obtained using Nicolet 5700 FTIR with KBr method. X-ray diffraction (XRD) patterns of the samples were characterized by using a philps-pw3040/60 diffractometer with Cu K α radiation ($\lambda=0.15418$ nm). The morphologies and the microstructure of the synthesized samples were observed by a scanning electron microscopy (SEM, Nova NanoSEM450) and a transmission electron microscope (TEM, JEOL JEM2010), respectively. A Lakeshore 7404 vibrating sample magnetometer was used to measure the magnetization of the samples in applied magnetic fields over the range of -10 to +10 kOe at room temperature.

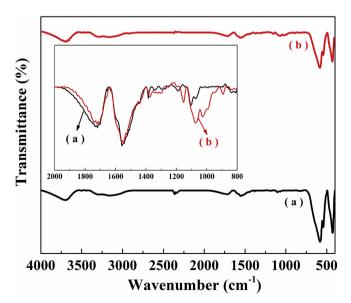


Fig. 2. FTIR spectra of (a) BaFe₁₂O₁₉ and (b) the BaFe₁₂O₁₉ @ chitosan composites.

3. Results and discussion

3.1. Proposed preparation scheme of the $BaFe_{12}O_{19}$ @ chitosan composites

Fig. 1 illustrates the preparation process of the $BaFe_{12}O_{19}$ @ chitosan Schiff-base composites. First, chitosan is deposited onto the surface of the $BaFe_{12}O_{19}$ through the $BaFe_{12}O_{19}\cdots H-O-$ interactions under the environment of glutaraldehyde at the pH of 13. Second, the $BaFe_{12}O_{19}$ @ chitosan composites are formed at 60 °C stirring for 2 h through the crosslinking reaction between chitosan and glutaraldehyde onto the surface of $BaFe_{12}O_{19}$. The characterization is discussed as follows.

3.2. FTIR analysis

Fig. 2 shows the FTIR spectra of BaFe₁₂O₁₉, the BaFe₁₂O₁₉ @ chitosan composites. In Fig. 2a, the characteristic peaks of BaFe₁₂O₁₉ are at 584 and 432 cm⁻¹ with slightly shift compared with the literature [31]. The peaks at 584 and 432 cm⁻¹ can be attributed to Fe(Ba)-O stretching vibration. From the insert pattern, Fig. 2b shows the characteristic peaks of the BaFe₁₂O₁₉ @ chitosan composites at 1719, 1547, 1152, 1072, 1026, 584 and

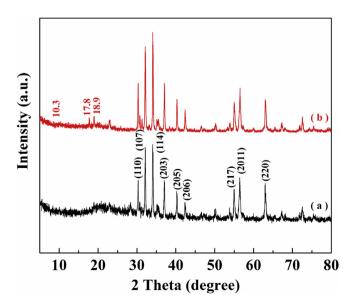


Fig. 3. XRD spectra of (a) $BaFe_{12}O_{19}$ and (b) the $BaFe_{12}O_{19}$ @ chitosan composites.

Download English Version:

https://daneshyari.com/en/article/1503956

Download Persian Version:

https://daneshyari.com/article/1503956

<u>Daneshyari.com</u>