Solid State Sciences 52 (2016) 72-77

Contents lists available at ScienceDirect

Solid State Sciences

journal homepage: www.elsevier.com/locate/ssscie

Hydrothermal synthesis and magnetic properties of a new phase of $SrCo_2(PO_4)_2$

Ming Yang, Suyun Zhang, Wenbin Guo, Zhangzhen He^{*}

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China

ARTICLE INFO

Article history: Received 9 July 2015 Received in revised form 28 October 2015 Accepted 17 December 2015 Available online 21 December 2015

Keywords: Hydrothermal Isostructural Two-dimensional Antiferromagnetic interaction Phosphate

1. Introduction

Transition-metal phosphates with a formula of $AM_2(PO_4)_2$ (A = Sr, Ba, Pb; M = Mn, Fe, Ni, Co, Cu) have attracted considerable interest because they display enormous structural diversity and various magnetic properties. Analysis of coordination and linkage of M atoms is very important to understand crystal structures and magnetic behaviors. In general, magnetic M²⁺ ion coordinates with oxygen atoms to form a $[MO_n]$ (n = 4, 5 and 6) polyhedron, which further results in 0D cluster, 1D chain and 2D layer by corner- or edge-sharing. Therefore, different magnetic properties are obviously observed in the system. For example, the \mbox{Cu}^{2+} ions in BaCu₂(PO₄)₂ constitute isolated zigzag chains and magnetic susceptibility exhibits a abroad maximum around 65 K [1,2], while two isotypic compounds SrCu₂(PO₄)₂ [3,4] and PbCu₂(PO₄)₂ [5,6] are built up from corner-sharing [Cu₂O₈] units showing a spin singlet state with a spin gap. Among three honeycomb lattice compounds $BaNi_2(PO_4)_2$, $BaFe_2(PO_4)_2$ and γ - $BaCo_2(PO_4)_2$, the Ni-compound is an antiferromagnet with a Neel temperature at 24 K [7,8]. The Fecompound has a structural transition at 140 K (R-3 \rightarrow P-1) and a ferromagnetic (FM) ordering at 65.5 K accompanying the rare re-

ABSTRACT

A new compound β -SrCo₂(PO₄)₂ was successfully synthesized under mild hydrothermal condition. The structure consists of two types of edge-shared [Co₂O₁₀] dimers which connect to each other via corner sharing to form two-dimensional (2D) CoO-layers. Further, these layers are linked by PO₄ tetrahedra and Sr²⁺ cations, leading to a three-dimensional (3D) framework. As evidenced by the results of susceptibility and magnetization measurements, this compound displays a long-range antiferromagnetic (AFM) ordering at 27 K. Moreover, the results of thermal analyses reveal that a small quantity of β phase would be converted to α form after heating.

© 2015 Elsevier Masson SAS. All rights reserved.

entrant structural $P-1 \rightarrow R-3$ transition [9,10]. Additionally, it is found that this compound displays the amusing exsolution of Fe²⁺ ions [11–13]. Up to now, there are three certain phases for Cocompound. The high temperature γ phase is a helimagnet with FM chains below 3.8 K [14–16]. The low temperature monoclinic α form is constructed from zigzag chains shows a canting AFM below 17 K and transforms to trigonal β phase at 973 K containing isolated CoO₄ tetrahedra without reports of magnetism [17].SrFe₂(PO₄)₂ consists of 2D layers based on linear Fe2-Fe1-Fe1-Fe2 tetrameric clusters and undergoes structural phase transition at 11.3 K and canting AFM at 7.0 K [18,19]. SrMn₂(PO₄)₂ contains 2D MnO-layers constructed from Mn₄ and Mn₈ clusters, and no results of magnetic behaviors are published [20]. To compare the interesting characters of iso-formular compounds AM₂(PO₄)₂ mentioned above, the synthesis, structural parameters and magnetic properties are summarized in Table 1.

In our previous work, we reported the synthesis of $SrCo_2(PO_4)_2$ (named α -SrCo₂(PO₄)₂) by a high temperature solid state reaction [21]. To obtain new compounds in this system, we adopt a hydrothermal method which has been widely used to produce new materials. In this article, we have successfully synthesized a new phase of $SrCo_2(PO_4)_2$ (named β -SrCo₂(PO₄)₂) under a mild hydrothermal condition. The 3D framework of β -SrCo₂(PO₄)₂, which is different from the α phase with a structural characterization of four spin units [22], contains 2D CoO-layers involving two types of

CrossMark

^{*} Corresponding author. Tel./fax: +86 591 63173255. E-mail addresses: hcz1988@hotmail.com, hezz@fjirsm.ac.cn (Z. He).

 Table 1

 The synthesis, crystal structures and magnetic properties of AM₂(PO₄)₂ family which are abbreviated to AM₂.

Compound abbreviation	Synthesis method	Space group	a (Å) α (°)	b (Å) β (°)	c (Å) γ (°)	$\begin{array}{c} d_{M-M}\left(\mathring{A}\right) \\ \angle M {-} O {-} M \\ \left(\mathring{}\right) \end{array}$	Topology of M polyhedra	J/κ_B (K)	Structural and magnetic transition	Ref.
BaCu ₂	SSR	P-1	9.226 106.76	9.271 5 101.69	10.516 115.70	3.474 to 3.736 121.00 to 124.90	Zigzag chain	–51.6 and –49.5	SRO at 65 K, no LRO above 2 K	[1,2]
SrCu ₂	SSR	Pccn	7.942 90	15.369 90	10.370 90	3.256 96.85	Dimer	-41.2 and -29.5	spin-singlet with a gap of 63 K, no LRO above 0.45 K	[3,4]
PbCu ₂	SSR	Pccn	8.038 90	15.465 90	10.368 90	3.273 101.33	Dimer	–48.5 and –43.3	spin-singlet with a gap of 43 K, no LRO above 0.45 K	[5,6]
α-BaCo ₂	SSR	P2 ₁ /a	9.211 90	5.004 92.74	8.085 90	3.568 122.66	Zigzag chain	-	transform to β -BaCo ₂ at 1173 K, canting AFM transitions at 17 K	[17]
β -BaCo ₂	Transition from α phase	n <i>P-</i> 3	5.223 90	5.223 92	8.261 120	-	Isolated	-	-	[17]
γ -BaCo ₂	SSR or HTM	R-3	4.855 90	4.855 90	23.215 120	2.808 84.02	Honeycomb	20, 0 and -8	helical magnetic structure with FM chains at 3.8 K	[15,16]
α-SrCo ₂	SSR	<i>P</i> -1	5.014 118.04	8.639 75.09	9.691 86.90	3.058 and 3.409 99.72 and 117.54	Four spin cluster	· _	LRO AFM at 23 K	[21,22]
β-SrCo ₂	НТМ	P-1	5.503 110.23	6.703 3 101.15	9.238 98.29	3.049 to 4.015 91.64 to 123.19	2D layer	-	LRO AFM at 27 K	This work
BaNi ₂	SSR	R-3	4.811 90	4.811 90	23.302 120	2.780 84.96	Honeycomb	—18, —7.2 and —9.9	LRO AFM at 24 K	[7,8]
SrNi ₂	SSR	P-1	5.468 110.58	6.667 3 100.87	9.156 98.01	2.993 to 4.005 92.05 to 124.27	2D layer	-	two AFM orderings at 23 and 10 K, spin-flop at 2 K with $H_c = 4 \ \text{T}$	[25,26]
BaFe ₂	HTM	R-3	4.873 90	4.873 90	23.368 120	2.818 82.95	Honeycomb	16.84, 1.43 and 3.76	structural transition at 140 K, FM and another structural transition at 65.5 K	[9,10]
SrFe ₂	SSR	P2 ₁ /c	9.354 90	6.838 109.51	10.519 90	2.971 to 4.056 78.39 to 114.48	2D layer	-	structural transition at 11.4 K, canting AFM transitions at 7.4 K	[18,19]
SrMn ₂	SSR	P-1	8.860 124.27	9.054 90.23	10.260 90.26	3.293 to 3.698 95.19 to 115.26	2D layer	-	_	[20]

SSR: solid state reaction; HTM: hydrothermal; LRO: long-range ordering; SRO: short-range ordering.

 $[Co_2O_{10}]$ dimers formed from $Co(1)O_6$ and $Co(2)O_6$ octahedra via edge sharing. These layers are separated by PO₄ tetrahedra and Sr²⁺ cations. Magnetic susceptibility and magnetization demonstrate the β form exhibits the typical feature of antiferromagnet with a magnetic ordering at 27 K, a little higher than that of α phase (T_N = 23 K) [21]. Thermal analyses testify that a small number of β phases would be transformed to α phase after thermal treatment for 5 h.

2. Experimental

2.1. Materials and methods

All reagents were used as received without further purification except α -Co₂P₂O₇ which was synthesized by solid state reaction according to Ref. [23]. Single crystal of β -SrCo₂(PO₄)₂ was prepared through a facile hydrothermal synthesis route. A mixture of α -Co₂P₂O₇ (0.0584 g, 0.2 mmol), Sr(NO₃)₂ (0.0846 g, 0.4 mmol) and 5 mL H₂O was stirred for 10 min in air. The obtained mixture was then transferred into a 28 mL Teflon-lined autoclave and heated at 230 °C in an oven for 120 h. The autoclave was cooled down to room temperature at a rate of 0.1 °C/min, and purple rhombus-shaped crystals of β -SrCo₂(PO₄)₂ were isolated, washed with distilled water and dried in air at 60 °C.

2.2. Measurements

Powder X-ray diffraction (PXRD) date was carried out using a Rigaku MiniFlex-II X-ray Powder Diffractometer in the range of $5-65^{\circ}$ with the scanning rate of 5° /min at room temperature. Thermogravimetry (TG) and differential scanning calorimetry (DSC) analyses were measured on a NETZSCH 449C thermal analyzer instrument with the temperature ranging from 30 to 1000 °C under N₂ atmosphere using a heat rate of 10 °C/min. The magnetic susceptibility was recorded on a Quantum Design SQUID MPMS-XL magnetization at 2 K was performed by a Quantum Design PPMS instrument from 0 to 8 T.

2.3. X-ray crystallography

Single crystal X-ray diffraction intensity data of the titled compound were collected at 293 K using Rigaku Mecurry CCD area detector diffractometer equipped with graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å). The structure was solved by direct methods and refined by the full-matrix least-squares technique on F^2 using the program SHELXTL [24]. All atoms were found from difference Fourier maps and refined anisotropically. The detailed crystal data and refinement parameters for β -SrCo₂(PO₄)₂ Download English Version:

https://daneshyari.com/en/article/1504039

Download Persian Version:

https://daneshyari.com/article/1504039

Daneshyari.com