Solid State Sciences 27 (2014) 55-59

Contents lists available at ScienceDirect

Solid State Sciences

journal homepage: www.elsevier.com/locate/ssscie

Synthesis and characterization of a new organically templated open-framework beryllium phosphite with 3, 4-connected networks

Guo-Ming Wang^a,*, Xiao Zhang^a, Jin-Hua Li^a, Pei Wang^a, Zong-Hua Wang^a, Ying-Xia Wang^b, Jian-Hua Lin^b

^a Teachers College, College of Chemistry and Environment of Qingdao University, Shandong 266071, China

^b Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

A R T I C L E I N F O

Article history: Received 24 April 2013 Received in revised form 6 November 2013 Accepted 15 November 2013 Available online 25 November 2013

Keywords: Beryllium phosphite Hydrothermal synthesis Crystal structure Open-framework 12-Ring channel

1. Introduction

Crystalline microporous materials have attracted considerable attention in the past decades due to their rich structural chemistry and widespread applications in catalysis, absorption, ion-exchange and separation, etc [1-5]. Since the pioneering work reporting the crystalline aluminophosphate molecular sieves in 1982 [6], great efforts have been devoted to the pursuit of new zeolitic materials with novel topologies and pore structures. Many non-alumino silicate-based microporous systems, such as metal phosphates, germanates, borates, arsenates, etc., have been explored and developed successively [7]. The metal phosphate family has proved to be an undoubted star of microporous materials, and huge number of such solids with zero- (clusters), one- (chains or ladders), two- (layers) and three-dimensional (continuous) structures have been reported [8–13]. Recently, the replacement of tetrahedral phosphate groups by pseudo-pyramidal phosphite groups has resulted in a new class of metal phosphites with great success. Compared to the 4-connected {PO₄} unit, the presence of 3connected {HPO₃} group can reduce the M–O–P connectivity and thus favors to generate interrupted open structures with larger

E-mail address: gmwang_pub@163.com (G.-M. Wang).

ABSTRACT

Employing diethylenetriamine (=dien) as a structure-directing agent, a new open-framework beryllium phosphite H₂dien·Be₃(HPO₃)₄ (**1**), has been synthesized hydrothermally and structurally characterized by single crystal X-ray diffraction. The structure of **1** features a (3, 4)-connected framework with 8- and 12-ring channels, which is constructed from strictly alternating BeO₄ tetrahedra and HPO₃⁻⁻ pseudo-pyramids. The 3-D framework possesses a *pcu* topology when the heptameric [Be₃(HPO₃)₄] clusters are regarded as 6-connected secondary building units. Crystal data: **1**, monoclinic, *C2/c* (no. 15), a = 8.7350(3) Å, b = 15.1704(6) Å, c = 13.0851(4) Å, $\beta = 101.223(5)^{\circ}$, V = 1700.79(10) Å³, Z = 4, $R_1 = 0.0625$, $wR_2 = 0.1692$.

© 2013 Elsevier Masson SAS. All rights reserved.

pore sizes and lower framework densities. Notable examples include $Zn_3(HPO_3)_4Zn(H_2O)$ and $[Ni(C_6N_2H_{14})_2][Zn_4(H_2O)(HPO_3)_5]$ with intersecting 16R channels [14,15], CoHPO-CJ2 with 18R channels [16], TJPU-3 with 20R channels [17], Cr-NKU-24, ZnHPO-CJn (n = 1-4) and $[HR]_2[Zn_3(HPO_3)_4]$ (R = CHA, CHPA) with extralarge 24R channels [18–20], bimetallic phosphite NTHU-5 with 26R channels [21], and recently reported NTHU-13 family with 28-, 40-, 48-, 56-, 64- and 72R channels [22].

Hitherto, the interest in microporous phosphites has focused primarily on zinc phosphites and substituted transition metal elements, such as V(III), Cr(III), Fe(III), Mn(II), Co(II) and Ni(II) [16,23-30]. In contrast, very little work has been carried out on the openframework materials containing metal elements of main block [31–36]. From the aspect of structural view, the beryllium element is an ideal structural building block for open-framework structures because its radius is similar to that of Si⁴⁺ and favors to tetrahedrally coordinate to oxygen atoms. Therefore, it is expected that a series of new materials with novel architectures would be realized via template-directed routes under common hydrothermal or solvothermal synthetic methods. However, only a few porous beryllium phosphites have been reported thus far [37–41]. [H₃N(CH₂)₃NH₃]. Be₃(HPO₃)₄, for example, is the first organically templated beryllium phosphite with 12-ring channels; BeHPO-1 and SCU-24 possesses large 16-ring and 24-ring channels, respectively. With an aim toward synthesizing novel organically templated phosphites, we conducted

^{*} Corresponding author. Fax: +86 532 85956024.

^{1293-2558/\$ -} see front matter © 2013 Elsevier Masson SAS. All rights reserved. http://dx.doi.org/10.1016/j.solidstatesciences.2013.11.008

Fig. 1. Simulated and experimental X-ray powder diffraction patterns of 1.

our study on the hydrothermal synthesis in beryllium-phosphiteamine systems. Here we describe the synthesis and structure of a new organically templated beryllium phosphite H_2 dien·Be₃(HPO₃)₄ (**1**), which exhibits a (3, 4)-connected three-dimensional framework with 8- and 12-ring channels.

2. Experimental

2.1. Materials and methods

Reagents were purchased commercially and used without further purification. The CHN analyses were carried out on an Elemental Vario EL *III* CHNOS elemental analyzer. Powder X-ray diffraction (XRD) data were obtained using a Philips X'Pert-MPD diffractometer with Cu-K α_1 radiation ($\lambda = 1.54076$ Å). Infrared spectra were obtained from sample powder pelletized with KBr on an ABB Bomen MB 102 series FTIR spectrophotometer over a range 400–4000 cm⁻¹. The thermogravimetric analysis (TGA) was performed on a Mettler Toledo TGA/SDTA 851e analyzer in N₂ atmosphere with a heating rate of 10 °C/min from 40 to 1000 °C.

2.2. Synthesis

The title compound was synthesized hydrothermally under autogenous pressure. In a typical synthesis, a mixture of

Table 1				
Crystal data and	structure	refinement	for	1.

Empirical formula	$[C_4H_{15}N_3][Be_3(HPO_3)_4]$
Formula weight	452.13
Crystal system	Monoclinic
Space group	C2/c
a/Å	8.7350(3)
b/Å	15.1704(6)
c/Å	13.0851(4)
$\beta ^{\circ}$	101.223(5)
V/Å ³	1700.79(10)
Z	4
$D_c/g \text{ cm}^{-3}$	1.766
μ (Mo-K α)/mm ⁻¹	0.508
Reflection collected	4627
Independent reflections	1727 [$R(int) = 0.0282$]
Parameters refined	142
Limiting indices	$-10 \le h \le 10, -18 \le k \le 18, -14 \le l \le 16$
Goodness-of-fit on F^2	1.057
Final R_1 , $wR_2[I > 2\sigma(I)]$	0.0625, 0.1692

Table 2

Selected bond length (Å) and angles (°) for 1.ª

Be(1)-O(1)	1.633(5)	P(1)-O(1)	1.523(3)
Be(1)-O(2)#1	1.609(5)	P(1)-O(2)	1.510(3)
Be(1)-O(5)#2	1.619(5)	P(1)-O(3)	1.528(3)
Be(1)-O(6)#3	1.623(5)	P(1)-H(1)	1.5203
Be(2)-O(3)	1.623(4)	P(2)-O(4)	1.469(5)
Be(2)-O(4)	1.578(6)	P(2)-O(5)	1.451(3)
Be(2)-O(3)#4	1.623(4)	P(2)-O(6)	1.481(3)
Be(2)-O(4)#4	1.578(6)	P(2)-H(2)	1.6016
O(2)#1-Be(1)-O(1)	109.9(3)	O(2)-P(1)-O(3)	110.35(18)
O(2)#1-Be(1)-O(5)#2	111.0(3)	O(1) - P(1) - O(3)	109.88(17)
O(2)#1-Be(1)-O(6)#3	112.6(3)	O(2) - P(1) - H(1)	108.3
O(5)#2-Be(1)-O(6)#3	110.7(3)	O(1) - P(1) - H(1)	104.8
O(5)#2-Be(1)-O(1)	103.5(3)	O(3) - P(1) - H(1)	108.8
O(6)#3-Be(1)-O(1)	108.8(3)	O(5) - P(2) - O(4)	120.3(3)
O(3)-Be(2)-O(3)#4	114.2(4)	O(5)-P(2)-O(4')	118.4(3)
O(4)-Be(2)-O(3)	118.0(3)	O(5)-P(2)-O(6)	120.15(18)
O(4)-Be(2)-O(3)#4	112.0(3)	O(4) - P(2) - O(6)	119.5(3)
O(3)-Be(2)-O(4')	104.2(3)	O(5) - P(2) - H(2)	97.7
O(4)-Be(2)-O(4')#4	110.6(5)	O(4')-P(2)-H(2)	109.6
O(2) - P(1) - O(1)	114.46(14)	O(6) - P(2) - H(2)	98.9
P(1) - O(1) - Be(1)	134.8(2)	P(2) - O(4) - Be(2)	147.5(5)
P(1)-O(2)-Be(1)#1	137.1(2)	P(2)-O(5)-Be(1)#2	146.1(3)
P(1)-O(3)-Be(2)	133.8(2)	P(2)-O(6)-Be(1)#5	137.6(2)

^a Symmetry transformations used to generate equivalent atoms:#1 –x, –y, –z; #2 –x + 1/2, –y + 1/2, –z; #3 x – 1/2, –y + 1/2, z – 1/2; #4 –x, y, –z + 1/2; #5 x + 1/ 2, –y + 1/2, z + 1/2.

BeSO₄·4H₂O (0.179 g), H₃PO₃ (0.327 g), diethylenetriamine (dien, 0.16 mL), ethylene glycol (3 mL) and H₂O (2 mL) in the molar ratio of 1: 4: 1.5: 53: 111 was sealed in a Teflon-lined autoclave and heated at 170 °C for 7 days. After cooling to room temperature, the resulting colorless product was recovered by filtration, washed with distilled water, and dried in air (84.2% yield based on beryllium). CHN elemental analysis confirmed its stoichiometry (Anal. Found: C 10.22, H 4.04, N 9.10%; Calcd: C 10.63, H 4.23, N 9.29%). The X-ray powder diffraction pattern for the resulting product is in good agreement with the simulated pattern on the basis of the crystal structure, indicating the phase purity of the as-synthesized samples of the title compound (Fig. 1).

Caution: Beryllium containing compounds are extremely toxic. Appropriate precautions should be taken to handle these compounds.

2.3. Determination of crystal structure

A suitable colorless single crystal of as-synthesized compound with the dimensions of 0.18 \times 0.12 \times 0.10 mm^3 was carefully

Fig. 2. IR spectrum of 1.

Download English Version:

https://daneshyari.com/en/article/1504512

Download Persian Version:

https://daneshyari.com/article/1504512

Daneshyari.com