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A B S T R A C T

In order to elucidate some basic principles for protein–ligand interactions, a subset of 87 structures of
human proteins with their ligands was obtained from the PDB databank. After a short molecular
dynamics simulation (to ensure structure stability), a variety of interaction energies and structural
parameters were extracted. Linear regression was performed to determine which of these parameters
have a potentially significant contribution to the protein–ligand interaction. The parameters exhibiting
relatively high correlation coefficients were selected. Important factors seem to be the number of ligand
atoms, the ratio of N, O and S atoms to total ligand atoms, the hydrophobic/polar aminoacid ratio and the
ratio of cavity size to the sum of ligand plus water atoms in the cavity. An important factor also seems to
be the immobile water molecules in the cavity. Nine of these parameters were used as known inputs to
train a neural network in the prediction of seven other. Eight structures were left out of the training to test
the quality of the predictions. After optimization of the neural network, the predictions were fairly
accurate given the relatively small number of structures, especially in the prediction of the number of
nitrogen and sulfur atoms of the ligand.

ã 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Since the 1980s, computer-aided drug design has been
employed to help with the design of new drugs (determination
of the molecular target of the drug and its structure, determination
of the interaction mechanism, etc.). The field of protein
structure–function has contributed significantly to this
(Ghersi and Sanchez, 2011). An example is the use of the
complementarity function (Sobolev et al., 1997;
Sobolev et al., 1999) for protein–protein interactions, where the
potential for a stable interaction of two biomolecules is
determined by the frequency of favorable atomic interactions
versus the frequency of unfavorable ones. A trend is to use the four
basic non-covalent interactions: electrostatic, hydrogen bonds, van

der Waals and hydrophobic interactions (Lins and Brasseur, 1995).
Relevant to this is the effort to statistically study the various types
of aminoacids of the interaction hotspots (Boganand and Thorn,
1998; Halperin et al., 2004; Jones and Thornton, 1996).

To understand the above interactions we must also use
topological criteria, since these interactions depend on the
distance and atom position. Initially, the lock-and-key model
was used (Durrant and McCammon, 2011; Whitesides and
Krishnamurthy, 2005) for the interaction of proteins with receptor
agonists and antagonists and enzyme inhibitors and activators.
This approach was complemented using molecular simulations,
due to the increase in computing power and the experimental and
theoretical determination of the behavior of atoms in
semi-empirical force fields, like CHARMM (MacKerell et al.,
1988, 1998). An important point is the handling of the hydrophobic
interactions (Lins and Brasseur, 1995; Meyer et al., 2006).

Very useful are the in silico screening methods (Schmidt et al.,
2009; Wishart et al., 2008), where a chemical substance can be
checked for probable interactions against a database of structures.
Also, open is the question of the role of neighboring relatively
conserved water molecules that regulate and enhance the
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interaction of proteins, like e.g., hsp90 (Yan et al., 2008). Water
molecules are of interest for many aspects relevant to computa-
tional drug design such as structure, thermodynamics, binding free
energy calculation, molecular docking and molecular simulation
studies (deBeer et al., 2010). As replacing or conserving a crystal
water molecule remains a critical problem for effective drug
design, the immobile water molecules emerge as potential targets.
Furthermore, other atoms have also been implicated that
allosterically regulate receptors, e.g., sodium ions in dopamine
receptor (Selent et al., 2010).

One method of structure-based or direct drug design is
attempting to build a ligand that fits to a known receptor 3D
structure (receptor-based drug design) (Schneider and Fechner,
2005). Such approaches include fragment-based drug discovery
(Merour et al., 2014) or combinatorial chemistry by Monte Carlo
methods (Grzybowski et al., 2002). The use of 3D-QSAR
(quantitative structure-activity relationships) is also widespread
(Verma et al., 2010).

Of particular importance is the inclusion of oxygen, nitrogen
and sulfur atoms in the ligand. These are atoms with high
electronegativity (especially oxygen and nitrogen) and therefore
they can significantly influence the properties and interactions of
the ligand. Hence the importance of the prediction of how many
there should be in it.

In this paper, we attempted an empirical analysis of the
protein–ligand interaction, using PDB databank structures and
combining various approaches using statistical measurements.
Various parameters of the interactions were determined to check
which of these could be useful during in silico drug design. Also,
the role of immobile water molecules was studied. Finally, a neural
network was created from some of the interaction parameters
determined, and this was used to predict other interaction
parameters.

2. Materials and methods

2.1. Databases used

To obtain the starting material the Protein Data Bank PDB
(Berman et al., 2000) was used. All the entries of the PDB database
with Homo sapiens as source organism were downloaded (a total of
20,761 entries). A script in the PERL programming language was
written to facilitate the examination and selection of the
appropriate PDB entries. Using this script, only the PDB entries
that met the following criteria were included: (I) to contain a
HETSYN record (indication of the existence of a ligand), (II) to
contain a TER record only once or twice (so that the selected files
will contain only one or two protein chains, (III) not to contain
heme or acetylglucosamine in the HETSYN record and (IV) not to
contain nucleic acids. After this selection 1528 PDB entries were
left, which were further examined manually and more entries were
excluded if the ligands were sugars or lipids. After this round of
selection, 400 PDB records were left. Next, these 400 entries were
examined and those that were similar were excluded (similarity
was defined as >95% identity in the protein sequence except when
two or more PDB entries with similar proteins contained different
ligands. In such cases the structures were retained, e.g PDB IDs
2J4A, 1XZX and 1Q4X, supplement IDs 6, 7 and 8). In the end, 95
entries were left. Of these 8 were further excluded due to many
discontinuities in the structure, to yield a total of 87 final entries for
the analysis. The general aim was to select simple entries
consisting mostly of a protein and a ligand. These entries with
the corresponding PDB IDs are shown in the Supplementary
material.

These 87 entries were classified in four categories (color coded
in the Supplementary material): receptor agonists/antagonists,

enzyme inhibitors, serum blockers–transporter inhibitors and
conformation blockers–chaperone inhibitors.

2.2. Molecular dynamics simulations

In order to to relax the protein–ligand system, energy
minimization and molecular dynamics simulations (MDS) were
performed using the PDB files as the initial state. The MDS were
performed using the programs NAMD (Phillips et al., 2005) with
the CHARMM force field (MacKerell et al., 1988; Brooks et al., 1983)
(version 27). File preparation and analysis of the MDS trajectories
were performed with the VMD (Humphrey et al., 1996) program.

The standard topology files of the CHARMM force field were
insufficient to generate the structure file to be used in the MDS for
all the PDB entries because no topologies for the ligands of the
sample exist in the CHARMM force field. For this reason, the
PRODRG program (Schüttelkopf and Aalten, 2004) was used to
generate the missing topologies and force field parameters. The
force field parameters for the covalent interactions (bonds, angles,
dihedral angles and impropers) were also normalized to be of the
same order of magnitude as those of CHARMM. E.g., in CHARMM
the bond potential function is Kb(b–b0)2. For a C—H bond, b is the
bond length, b0 (the equilibrium bond length) is 1.090 Å and Kb

(the spring constant) is 367.6 kcal mol�1 Å�2. When PRODRG gave a
value of 13,971.0 kcal mol�1Å�2 for Kb, this was divided by a factor
of 40 to be of the same order of magnitude as that of CHARMM.
Without this normalization, the simulations would crash shortly
after they started.

For the MDS, each system was placed in a box without periodic
boundary conditions and water molecules were added using the
“add Solvation box” plugin of VMD. Next, ions were added
(only Na+ and Cl�) using the VMD plugin “Add Ions”. The
dimensions of the water and ion-filled box were 5 Å from the
coordinates of the most extreme atom of the protein–ligand
structure in each dimension. The simulations were run at 300
Kelvin with a 2 femtosec timestep. The basic parameters for the
MDS were: 1–4 scaling = 1.0, cutoff = 12.0, switchdist = 10.0,
pairlistdist = 13.5 without harmonic or periodic boundary con-
ditions, with constant temperature control and Langevin dynam-
ics. A representative configuration file containing the parameters
of the simulation can be found in the Supplementary materials.
Before the actual simulation, an energy minimization (EM) was
performed for 3000 steps. The number of steps of the actual
simulation were chosen at about 60,000 steps depending on each
system size and time consumption required for each trajectory. The
aim of the short MDS was to relax the crystal structure in a way
compatible with the force field used, thus making the energy
calculations more reliable for the purpose they were used. In order
to verify this, after the simulation one more energy minimization
was performed for 1000 steps and the non-covalent energies of the
two stages (end of MDS and final MDS + EM) were compared. In all
but two cases (ID 56 and 57, PDB ID 1ZD2 and 1ZD4,
Supplementary material) the differences (comparing only the
protein + ligand system) were small (<13 kcal/mol in absolute
values). Furthermore, the root mean square deviation (RMSD) for
both the protein backbone and the ligand were determined and
compared to the initial structure. In all cases the RMSD remained
stable and with values of <0.8 Å (for the protein) and <2.0 Å
(for the ligand). Even in the two exceptions mentioned above (ID
56 and 57, PDB ID 1ZD2 and 1ZD4) the RMSD for the ligand was
stable at about 6.0 Å and 3.5 Å, respectively. For this reason, these
two cases were retained for subsequent study.

After the simulation, many parameters related to the structure
and stability of the protein–ligand systems were extracted; e.g., the
total non-bonding interaction energies before and after the
simulation, the number of water molecules in the protein–ligand
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