Solid State Sciences 13 (2011) 850-854

Contents lists available at ScienceDirect

Solid State Sciences

journal homepage: www.elsevier.com/locate/ssscie

Synthesis, crystal structure and properties of a new bi-dentate decavanadate $[Cu(en)_2H_2O]_2[H_2V_{10}O_{28}] \cdot 12H_2O$

Huiyuan Ma^{a,b,*}, Xin Meng^b, Jingquan Sha^c, Haijun Pang^a, Lizhou Wu^b

^a A Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, China ^b Chemistry Department of Harbin Normal University, Harbin 150025, China

^cSchool of Chemistry and Pharmacy, Jiamusi University, Jiamusi 154007, China

School of Chemistry and Tharmacy, flamast Oniversity, flamast 154007, Chin

ARTICLE INFO

Article history: Received 12 September 2009 Received in revised form 25 May 2010 Accepted 13 March 2011 Available online 29 March 2011

Keywords: Polyoxometalates Hydrothermal synthesis Vanadate Fluorescence Electrochemical property

ABSTRACT

A new bi-dentate decavanadate compound formulated [Cu(en)₂H₂O]₂[H₂V₁₀O₂₈]·12H₂O (en = ethylenediamine) (**1**) has been hydrothermally synthesized and structurally characterized. And **1** crystallizes in the triclinic, space group *P*-1 with *a* = 10.2606(5) Å, *b* = 13.4690(6) Å, *c* = 15.2084(7) Å, *α* = 102.8150(1)°, β = 91.2380(1)°, γ = 92.1010(1)°, *V* = 2047.12(2) Å³, R₁(*I* > 2 σ (*I*) = 0.0511), and *Z* = 2. X-ray diffraction analysis reveals that **1** is constructed from bi-dentate decavanadate formed by decavanadate clusters coordinated to [Cu(en)₂H₂O]²⁺ complexes and free water molecules. Furthermore, a three-dimensional (3D) framework is achieved in **1** *via* hydrogen bonds between O/N atoms and H atoms of the neighboring [Cu (en)₂H₂O]₂[H₂V₁₀O₂₈] subunits. The UV–vis spectrum, fluorescent and electrochemical properties of **1** in aqueous solution are also studied.

© 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

Over the past decade, polyoxometalates (POMs) have been used as ideal inorganic building blocks for the construction of inorganic-organic hybrid materials, as they exhibit not only a wide variety of robust structural motifs of different sizes and topologies, ranging from closed cages and spherical shells to basket-, bowl-, barrel- and belt-shaped structures [1], but also their numerous practical applications and remarkable range of physical properties [2-7]. Among the various types of POMs, polyoxovanadates represent an important part of the group, and invariably contain highly symmetrical core assemblies of VO_n units, which assemble into either discrete molecular clusters or link together to form onedimensional chains, two-dimensional layers or three-dimensional frameworks [8]. Up to now, most of the polyoxovanadates have already been applied to act as building blocks to be connected with transition-metal complexes (TMCs) into polyoxovanadate-functional organic-inorganic hybrid materials to conflate useful

E-mail address: mahy017@163.com (H. Ma).

properties of POMs and TMCs components, providing access to a vast area of complex, multifunctional materials [9–14]. However, the compounds that consist of decavanadate anions linked to TMCs or organic cations have been rarely reported so far [15–25], and most of them are with discrete structures. Thus, the design and synthesis of such decavanadate compounds remain a challenge. We have recently been attempting to bind TMCs to the decavanadate anions. In this paper, we present the hydrothermal synthesis, crystal structure of a new compound $[Cu(en)_2H_2O]_2[H_2V_{10}O_{28}]$. $12H_2O$, in which the decavanadate anions acting as bi-dentate ligands are bonded to $[Cu(en)_2H_2O]_2[H_2V_{10}O_{28}]$ subunits. Furthermore, a 3D framework was formed *by* hydrogen bonds between O/N atoms and H atoms of the neighboring [Cu $(en)_2H_2O]_2[H_2V_{10}O_{28}]$ subunits in **1**.

2. Experimental

2.1. Materials and methods

All chemicals were of reagent grade and used without further purification. Elemental analyses (C, H and N) were recorded with a Perkin Elmer 2400 CHN Elemental Analyzer. V and Cu were determined by a Leaman inductively coupled plasma (ICP)

^{*} Corresponding author. A Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, China. Tel.: +86 45186392716; fax: +86 45186392716.

^{1293-2558/\$ –} see front matter © 2011 Elsevier Masson SAS. All rights reserved. doi:10.1016/j.solidstatesciences.2011.03.007

spectrometer. The UV-vis spectra were recorded on a U-3010 UV-vis spectrophotometer made in Japan in the range 190–1100 cm⁻¹. The FT-IR spectra were recorded from KBr pellets in the range 4000-400 cm⁻¹ with a Nicolet AVATAR FT-IR360 spectrometer. TG analysis was performed on a Perkin Elmer Diamond TG-DTA 6300 thermal analyzer in nitrogen with a heating rate of 10 °C·min⁻¹. Fluorescence spectra was performed with a Perkin Elmer LS55 luminescence spectrometer using a 150 W xenon lamp as excitation source. A CHI660 electrochemical workstation was used for control of the electrochemical measurements and data collection. A conventional three-electrode system was used, with a bare glassy carbon electrode (GCE) as a working electrode, a commercial Ag/AgCl as reference electrode and a twisted platinum wire as counter electrode. The GCE was polished with 1.0 and 0.3 μ m α -Al₂O₃ powders, successively sonicated in water for about 5 min after each polishing step. Finally, the electrodes were sonicated in ethanol, washed with ethanol, and dried with high purity nitrogen stream immediately before use.

2.2. Synthesis of [Cu(en)₂H₂O]₂[H₂V₁₀O₂₈] · 12H₂O, 1

Compound **1** was hydrothermally prepared in 53% yields (based on Cu). A mixture of 0.34 g CuCl₂·2H₂O, 0.95 g NH₄VO₃, 0.25 g H₂C₂O₄·2H₂O, 0.28 mL en and 18 mL water in a molar ratio of 1:4.1:1:2.1:500, was stirred for 2 h at 60 °C, then the solution was sealed in a 23 mL Teflon-lined autoclave and heated at 180 °C for 4 days with starting pH 6.47 adjusted by 6 M HCl. After cooling to room temperature slowly (20 h), dark-orange block crystals were isolated. The crystals were filtered and dried at room temperature. Anal. Calc. for **1** (%): C 6.1, H 3.9, O 42, N 7.1, V 32.3, Cu 8; Found (%): C 5.8, H 4.1, O 44, N 6.8, V 31.3, Cu 7.8.

2.3. X-ray crystallography

The single crystal of **1** with dimensions $0.12 \times 0.15 \times 0.22 \text{ mm}^3$ was carefully selected for single-crystal X-ray diffraction analysis. Data collections were performed on a Rigaku RAXIS-RAPID equipped with a narrow-focus, 5.4 kW sealed tube X-ray source (graphite-monochromated Mo K α radiation, 0.71073 Å). The data were collected at a temperature of $20 \pm 2 \degree$ C. The software SADABS was used for absorption correction [26]. The structure of **1** was solved by the direct method and refined by the full-matrix least-squares method on F^2 using the SHELXTL 97 crystallographic software package [27]. Anisotropic thermal parameters were used to refine all the non-hydrogen atoms. Positions of the hydrogen atoms attached to carbon and nitrogen atoms were fixed in ideal positions, and other hydrogen atoms were not located. Further details of the X-ray structural analysis for **1** are given in Table 1. The selected bond lengths are listed in Table S1.

The crystallographic data for **1** have been deposited with the Cambridge Crystallographic Data Center, CCDC No. 729198. Copies of data can be obtained free from the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ (fax: +44 1223 336033; e-mail: deposit@ccdc. cam.ac.uk or http://www.ccdc.cam.ac.uk).

3. Results and discussion

3.1. Structure description

The single-crystal X-ray diffraction analysis shows that **1** consists of $[H_2V_{10}O_{28}]^{4-}$ polyoxoanions, $[Cu(en)_2H_2O]^{2+}$ complexes and free water molecules (Fig. 1). The centrosymmetric $[H_2V_{10}O_{28}]^{4-}$ anions consists of five sharing edges $[VO_6]$, and has D_{2h} symmetry, which is similar to those reported in literatures [15-23]. Interestingly the decavanadate anions as a bi-dentate ligand, through the bridging

Та	h	le	1

Crystal data and structure refinements for compound 1.

Empirical formula	C ₈ H ₆₂ Cu ₂ V ₁₀ N ₈ O ₄₂	
Formula weight	1578.92	
T (K)	273(2) K	
Wavelength (Å)	0.71073	
Crystal system	Triclinic	
Space group	P-1	
a (Å)	10.2606(5)	
b (Å)	13.4690(6)	
<i>c</i> (Å)	15.2084(7)	
α (deg)	102.8150(1)	
β (deg)	91.2380(1)	
γ (deg)	92.1010(1)	
$V(Å^3)$	2047.12(2)	
Ζ	2	
D_{calcd} (g cm ⁻³)	2.331	
Absorption coefficient (mm ⁻¹)	6.909	
F(000)	1406	
θ range (deg)	1.37-28.27	
Reflections collected	12974	
Unique reflections/(R _{int})	9414/0.0293	
$\mu ({\rm mm^{-1}})$	3.299	
GOF on F^2	1.028	
Final R_1 , wR_2 ($I > 2\sigma(I)$)	0.0511, 0.1119	
Final R_1 , wR_2 (all data)	0.0853, 0.1359	
Largest diff. peak/hole (e·Å ⁻³)	0.848/-0.657	

 $R_1 = \sum ||F_0| - |F_C|| / \sum |F_0|; \ wR_2 = \sum [w(F_0^2 - F_C^2)^2] / \sum [w(F_0^2)^2]^{1/2}.$

oxygen atoms (O8, O8A) of two opposite $[VO_6]$ octahedral, coordinates to two $[Cu(en)_2H_2O]^{2+}$ complexes fragments to form a neutral molecular complex $[Cu(en)_2H_2O]_2[H_2V_{10}O_{28}]$, which is quite unusual among the decavanadates. There is only one symmetry independent Cu(II) ion in the structure of **1**, which is six coordinated by four nitrogen atoms from two en molecules (Cu1–N1 = 2.009(5) Å, Cu1–N2 = 2.012(5) Å, Cu1–N3 = 2.001(5) Å, Cu1–N4 = 2.004(5) Å) and two oxygen atoms from the decavanadate anions (Cu1–O8 = 2.530(5) Å) and one water molecules (Cu1–O15A = 2.668 (5) Å), forming a elongated octahedron geometry owing to Jahn–Teller effect. In comparison with the compound {[Cu(H₂O) (C₅H₁₄N₂)_{2]2} [V₁₆O₃₈(Cl)]}·4(C₅H₁₆N₂) (**2**) [24], which also possesses a structure constructed by copper cations and polyoxovanadate anions, two main differences are described below. First, the POM

 N_{1} N_{2} N_{4} N_{4} N_{4} N_{4} N_{5} N_{2} N_{4} N_{4} N_{5} N_{2} N_{6} N_{2} N_{2} N_{6} N_{2} N_{2} N_{2} N_{2} N_{2} N_{2} N_{2} N_{2} N_{2} N_{3} N_{2} N_{4} N_{3} N_{4} N_{3} N_{2} N_{4} N_{3} N_{4} N_{4} N_{3} N_{4} N_{4

Fig. 1. View of the fundamental unit of 1. All the hydrogen atoms and water molecules are omitted for clarity.

Download English Version:

https://daneshyari.com/en/article/1505169

Download Persian Version:

https://daneshyari.com/article/1505169

Daneshyari.com