Solid State Sciences 12 (2010) 1368-1373

Contents lists available at ScienceDirect

Solid State Sciences

A novel nitridogallate fluoride $LiBa_5GaN_3F_5-$ Synthesis, crystal structure, and band gap determination

Frauke Hintze, Wolfgang Schnick*

Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5–13 (D), 81377 München, Germany

A R T I C L E I N F O

Article history: Received 18 March 2010 Received in revised form 17 May 2010 Accepted 18 May 2010 Available online 26 May 2010

Keywords: Nitridogallate Crystal structure Electronic structure Optical measurements Sodium flux

ABSTRACT

LiBa₅GaN₃F₅ was obtained as red crystals by reaction of Ba, Ga, NaN₃ and EuF₃ in a Na/Li flux at 760 °C in weld-shut tantalum crucibles. The crystal structure (*Pnma* (no. 62), a = 15.456(3), b = 5.707(1), c = 12.259(3) Å, Z = 4) was solved on the basis of single-crystal X-ray diffraction data. In the solid there are trigonal planar [GaN₃]⁶⁻ ions and zigzag chains of vertex sharing LiF₆ octahedrons surrounded by Ba²⁺ ions. Optical measurements and calculations of the electronic structure revealed a band gap of \leq 1.9 eV. According to the calculations, the observed transition occurs from a nitrogen state into a hybrid Ba/N state.

© 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

Ternary nitrides of Ga in combination with alkaline earth metals (e.g., Sr, Ba) are known since a couple of years [1–4], but only a small number of guaternary examples have been reported recently [5–7]. Most of these compounds have been synthesized in sodium melts which due to addition of alkaline earth metals exhibit an increased solubility of nitrogen [8]. Syntheses were performed in closed niobium crucibles, utilizing additional azides as nitrogen source. Sr₃GaN₃, Sr₆GaN₅ [2], Sr₄GaN₃O and $Sr_4GaN_3(CN_2)$ [5] contain non condensed ("isolated") [GaN₃]⁶⁻ while Ba₃Ga₂N₄ and Sr₃Ga₂N₄ are made up of trans edge sharing GaN₄ tetrahedrons building infinite chains [1,4]. Two- or threedimensional networks of vertex sharing GaN₄ tetrahedrons have been found in Ca₃Ga₂N₄, Sr₃Ga₃N₅ [4] and LiSrGaN₂ [6], respectively. Thus, structural motifs similar to nitridosilicates (e.g., BaSi₇N₁₀; Eu₂SiN₃) [9,10] occur in the nitridogallates mentioned above. Recently, we have reported about synthetic approaches to control the dimensionality of nitridosilicates employing lithium melts [11]. In comparison with nitridosilicates, the field of nitridogallates is more unexplored but utilization of the lithium

1293-2558/\$ – see front matter @ 2010 Elsevier Masson SAS. All rights reserved. doi:10.1016/j.solidstatesciences.2010.05.012

flux technique may lead to a larger structural variety analogously to our experience with nitridosilicates.

2. Experimental

The synthesis of LiBa₅GaN₃F₅ was carried out in Ta crucibles (30 mm length, 9.5 mm diameter, 0.5 mm wall thickness). Under argon atmosphere (glove box Unilab, MBraun), 0.35 mmol (22.8 mg) NaN₃ (Acros, 99%), 0.138 mmol (9.6 mg) Ga (AluSuisse, 99.999%), 0.549 mmol (75.4 mg) Ba (Sigma Aldrich, 99.99%) and 0.027 mmol (5.7 mg) EuF₃ (Sigma Aldrich, 99.99%) were mixed and filled into the Ta crucible. For the flux 2.174 mmol (50.0 mg) Na (Sigma Aldrich, 99.95%) and 0.145 mmol (1.0 mg) Li (Sigma Aldrich, 99.9%) were added. The Ta crucible was sealed under argon by arc welding. To protect the Ta crucible from oxidation, it was placed into a silica tube under argon atmosphere. In a tube furnace the crucible was heated to 760 °C with a rate of 50 °C h^{-1} . The temperature was maintained for 48 h and then lowered with 3.7 °C h^{-1} to 200 °C. Once the temperature reached 200 °C, the furnace was turned off and cooled down to room temperature. The Ta crucible was opened and Na was separated from the reaction products by evaporation at 320 °C under vacuum (0.1 Pa) for 18 h. From the inhomogeneous gray product, red needle-shaped single crystals (200-600 µm) were isolated (cf. Fig. 1), enclosed in glass capillaries and sealed under argon atmosphere. X-ray diffraction data were collected at room temperature with a STOE IPDS I

^{*} Corresponding author. Tel.: +49 89 2180 77436; fax: +49 89 2180 77440. *E-mail address*: wolfgang.schnick@uni-muenchen.de (W. Schnick).

Fig. 1. SEM micrograph of LiBa₅GaN₃F₅ crystals.

diffractometer. A numerical absorption correction using the programs XRED [12] and XSHAPE [13] was applied. The crystal structure was solved by using direct methods with SHELXS [14]. The refinement of the structure was carried out by the method of least-squares using SHELXL [14]. The chemical composition was confirmed by energy dispersive X-ray spectroscopy (EDX) using a JSM-6500F scanning microscope (Jeol) provided with a Si/Li EDX detector (Oxford Instruments, model 7418). Optical spectra of LiBa₅GaN₃F₅ were measured with a modified microcrystal spectrophotometer CARY 17 (Spectra Services, ANU Canberra, Australia) [15–17]. Calculations of the band gap were carried out with the program package WIEN2K [18] utilizing the structural data from the single-crystal structure refinement.

Further details of the crystal structure investigations can be obtained from the Fachinformationzentrum Karlsruhe, 76344 Eggenstein–Leopoldshafen, Germany (Fax: +49-7247-808-666; E-Mail: crysdata@fiz-karlsruhe.de) on quoting the depository number CSD-421592.

3. Results and discussion

3.1. Crystal structure

The crystal structure was solved and refined in orthorhombic space group *Pnma* (no. 62) with a = 15.456(3), b = 5.707(1) and c = 12.259(3) Å. The crystallographic data of LiBa₅GaN₃F₅ is summarized in Table 1, the atomic coordinates and the isotropic displacement parameters are listed in Table 2.

In the crystal LiBa₅GaN₃F₅ zigzag chains of vertex sharing LiF₆ octahedrons running along [010] (cf. Fig. 2). Perpendicular to these chains, Ba atoms are arranged in layers. Likewise perpendicular to [010] "isolated" trigonal planar [GaN₃]^{6–} ions are found. The Ga–N bond-lengths range from 1.90 to 1.95 Å (Fig. 3) and agree well with the sum of the ionic radii [19–21] as well as with typical Ga–N distances (e.g., Sr₄GaN₃O, Ga–N:1.88–1.92 Å) [5]. Similar [GaN₃]^{6–} ions have been found in Sr₃GaN₃, Sr₆GaN₅ [2], Sr₄GaN₃O and Sr₄GaN₃(CN₂) [5]. The coordination sphere of the trigonal planar [GaN₃]^{6–} ions can be described as three-capped trigonal prisms of Ba²⁺ atoms. In Sr₃GaN₃ [2] similar trigonal prism of Sr²⁺ atoms have been observed. The N^{3–} atoms are likewise surrounded in distorted octahedrons of five Ba²⁺ and one Ga³⁺ atom.

Table	1
ladie	1

Crystallographic	data of	LiBa ₅ GaN ₃ F ₅ .
------------------	---------	---

Formula	LiBa5GaN3F5
Crystal system	orthorhombic
Space group	<i>Pnma</i> (no. 62)
Lattice parameters (Å)	a = 15.456(3), b = 5.707(1), c = 12.259(3)
Cell volume (Å ³)	1081.3(4)
Formula units per unit cell	4
Density (g cm ⁻³)	5.531
$\mu ({\rm mm}^{-1})$	20.41
T (K)	293(2)
F(000)	1520
Profile range	$5.8 \leq 2 heta \leq 63.2$
Index ranges	$-20 \le h \le 18$
	$-6 \le k \le 6$
	$-15 \leq l \leq 15$
Independent reflections	1286 [$R(int) = 0.072$]
Refined parameters	89
Goodness of fit	1.057
R_1 (all data); R_1 ($F^2 > 2\sigma(F^2)$)	0.0230, 0.0212
wR_2 (all data); wR_2 ($F^2 > 2\sigma(F^2)$)	0.0512, 0.0505
$\Delta ho_{ m max}$, $\Delta ho_{ m min}$ (e Å ⁻³)	1.56, -2.13

 Li^+ does not directly coordinate to the $[GaN_3]^{6-}$ ions but is surrounded by six F⁻ in a distorted octahedron. The Li–F distances are ranging between 1.97 and 1.98 Å for the equatorial F2 and F1 and 2.33–2.39 Å for the axial F3 and F4 (cf. Fig. 3). The latter ones exceed significantly the sum of the ionic radii (2.06 Å) [19] while the equatorial Li-F distances are slightly shorter than reported distances in other LiF₆ octahedrons (K₂LiAlF₆, Li-F: 2.109 Å) [22,23]. In the second coordination sphere, the octahedron LiF₆ is coordinated by eight Ba²⁺ in a cubic way, comparable with the cubic Ca²⁺-coordination of Ti⁴⁺ in CaTiO₃. The coordination of F⁻ occurs in distorted octahedrons of five Ba^{2+} and one Li⁺. Only F2 is coordinated by two Li⁺ and four Ba²⁺. The atomic distances Ba-F and Li-F are mentioned above. The thermal displacement parameter U_{iso}^*/U_{eq} of F4 is considerably higher (cf. Table 3) in comparison with the other values for fluorine atoms. One reason for this observation may be the fact, that - considering the octahedron LiF₆ – the F4 atom is a "free" one and does not connect to the next octahedrons. Additionally, the U_{11} value for F4 is almost three times higher than the values for the other F⁻. The short distance between Ba4-F4 (2.83 Å) may be responsible for this observation. The F3 atom has an even shorter distance to Ba4 (2.76 Å) and is also a non-bridging one. Here we can also observe a little higher U_{iso}^*/U_{eq} value.

Table 2Atomic coordinates and isotropic displacement parameters (Å2) of $LiBa_5GaN_3F_5$,standard deviations in parentheses.

Atom	Wyckoff	x	у	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
	position				
Ba1	4 <i>c</i>	0.43534 (2)	1⁄4	0.68180(2)	0.0092 (1)
Ba2	4 <i>c</i>	0.51012 (2)	-1⁄4	0.87769 (3)	0.0090(1)
Ba3	4 <i>c</i>	0.34365 (2)	-1⁄4	0.47028 (3)	0.0089(1)
Ba4	4 <i>c</i>	0.24513 (2)	-1⁄4	0.77891 (3)	0.0100(1)
Ba5	4 <i>c</i>	0.16417 (2)	1⁄4	0.63252 (2)	0.0109(1)
Ga1	4 <i>c</i>	0.35910 (4)	1⁄4	0.92467 (4)	0.0076(2)
F1	8d	0.4111 (2)	0.0121 (5)	0.3013 (2)	0.0151 (6)
F2	4a	1/2	0	1⁄2	0.0131 (7)
F3	4 <i>c</i>	0.4075 (3)	-1⁄4	0.6854 (3)	0.0171 (8)
F4	4 <i>c</i>	0.1779 (4)	-1⁄4	0.9936 (3)	0.027(1)
N1	4 <i>c</i>	0.4799 (4)	1⁄4	0.8980 (4)	0.014(2)
N2	4 <i>c</i>	0.2813 (4)	1⁄4	0.8020 (4)	0.013 (2)
N3	4 <i>c</i>	0.3152 (4)	1⁄4	1.0734 (5)	0.012 (2)
Li1	4 <i>c</i>	0.459 (2)	1⁄4	0.4020 (8)	0.026 (3)

Download English Version:

https://daneshyari.com/en/article/1505565

Download Persian Version:

https://daneshyari.com/article/1505565

Daneshyari.com