A novel nitridogallate fluoride $\mathrm{LiBa}_{5} \mathrm{GaN}_{3} \mathrm{~F}_{5}$ - Synthesis, crystal structure, and band gap determination

Frauke Hintze, Wolfgang Schnick*
Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13 (D), 81377 München, Germany

A R T I C L E I N F O

Article history:

Received 18 March 2010
Received in revised form 17 May 2010
Accepted 18 May 2010
Available online 26 May 2010

Keywords:

Nitridogallate
Crystal structure
Electronic structure
Optical measurements
Sodium flux

Abstract

$\mathrm{LiBa}_{5} \mathrm{GaN}_{3} \mathrm{~F}_{5}$ was obtained as red crystals by reaction of $\mathrm{Ba}, \mathrm{Ga}, \mathrm{NaN}_{3}$ and EuF_{3} in a $\mathrm{Na} / \mathrm{Li}$ flux at $760{ }^{\circ} \mathrm{C}$ in weld-shut tantalum crucibles. The crystal structure (Pnma (no. 62), $a=15.456(3), b=5.707(1)$, $c=12.259(3) \AA, Z=4)$ was solved on the basis of single-crystal X-ray diffraction data. In the solid there are trigonal planar $\left[\mathrm{GaN}_{3}\right]^{6-}$ ions and zigzag chains of vertex sharing LiF_{6} octahedrons surrounded by Ba^{2+} ions. Optical measurements and calculations of the electronic structure revealed a band gap of $\leq 1.9 \mathrm{eV}$. According to the calculations, the observed transition occurs from a nitrogen state into a hybrid Ba / N state.

© 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

Ternary nitrides of $G a$ in combination with alkaline earth metals (e.g., Sr, Ba) are known since a couple of years [1-4], but only a small number of quaternary examples have been reported recently [5-7]. Most of these compounds have been synthesized in sodium melts which due to addition of alkaline earth metals exhibit an increased solubility of nitrogen [8]. Syntheses were performed in closed niobium crucibles, utilizing additional azides as nitrogen source. $\mathrm{Sr}_{3} \mathrm{GaN}_{3}, \mathrm{Sr}_{6} \mathrm{GaN}_{5}$ [2], $\mathrm{Sr}_{4} \mathrm{GaN}_{3} \mathrm{O}$ and $\mathrm{Sr}_{4} \mathrm{GaN}_{3}\left(\mathrm{CN}_{2}\right)$ [5] contain non condensed ("isolated") $\left[\mathrm{GaN}_{3}\right]^{6-}$ while $\mathrm{Ba}_{3} \mathrm{Ga}_{2} \mathrm{~N}_{4}$ and $\mathrm{Sr}_{3} \mathrm{Ga}_{2} \mathrm{~N}_{4}$ are made up of trans edge sharing GaN_{4} tetrahedrons building infinite chains [1,4]. Two- or threedimensional networks of vertex sharing GaN_{4} tetrahedrons have been found in $\mathrm{Ca}_{3} \mathrm{Ga}_{2} \mathrm{~N}_{4}, \mathrm{Sr}_{3} \mathrm{Ga}_{3} \mathrm{~N}_{5}$ [4] and LiSrGaN 2 [6], respectively. Thus, structural motifs similar to nitridosilicates (e.g., $\mathrm{BaSi}_{7} \mathrm{~N}_{10} ; \mathrm{Eu}_{2} \mathrm{SiN}_{3}$) $[9,10]$ occur in the nitridogallates mentioned above. Recently, we have reported about synthetic approaches to control the dimensionality of nitridosilicates employing lithium melts [11]. In comparison with nitridosilicates, the field of nitridogallates is more unexplored but utilization of the lithium

[^0]flux technique may lead to a larger structural variety analogously to our experience with nitridosilicates.

2. Experimental

The synthesis of $\mathrm{LiBa}_{5} \mathrm{GaN}_{3} \mathrm{~F}_{5}$ was carried out in Ta crucibles (30 mm length, 9.5 mm diameter, 0.5 mm wall thickness). Under argon atmosphere (glove box Unilab, MBraun), 0.35 mmol (22.8 mg) NaN_{3} (Acros, 99%), $0.138 \mathrm{mmol}(9.6 \mathrm{mg}$) Ga (AluSuisse, 99.999%), $0.549 \mathrm{mmol}(75.4 \mathrm{mg})$ Ba (Sigma Aldrich, 99.99%) and $0.027 \mathrm{mmol}(5.7 \mathrm{mg}) \mathrm{EuF}_{3}$ (Sigma Aldrich, 99.99%) were mixed and filled into the Ta crucible. For the flux $2.174 \mathrm{mmol}(50.0 \mathrm{mg}) \mathrm{Na}$ (Sigma Aldrich, 99.95%) and $0.145 \mathrm{mmol}(1.0 \mathrm{mg}) \mathrm{Li}$ (Sigma Aldrich, 99.9%) were added. The Ta crucible was sealed under argon by arc welding. To protect the Ta crucible from oxidation, it was placed into a silica tube under argon atmosphere. In a tube furnace the crucible was heated to $760{ }^{\circ} \mathrm{C}$ with a rate of $50{ }^{\circ} \mathrm{C} \mathrm{h}^{-1}$. The temperature was maintained for 48 h and then lowered with $3.7^{\circ} \mathrm{C} \mathrm{h}^{-1}$ to $200^{\circ} \mathrm{C}$. Once the temperature reached $200^{\circ} \mathrm{C}$, the furnace was turned off and cooled down to room temperature. The Ta crucible was opened and Na was separated from the reaction products by evaporation at $320^{\circ} \mathrm{C}$ under vacuum (0.1 Pa) for 18 h . From the inhomogeneous gray product, red needle-shaped single crystals (200-600 $\mu \mathrm{m}$) were isolated (cf. Fig. 1), enclosed in glass capillaries and sealed under argon atmosphere. X-ray diffraction data were collected at room temperature with a STOE IPDS I

Fig. 1. SEM micrograph of $\mathrm{LiBa}_{5} \mathrm{GaN}_{3} \mathrm{~F}_{5}$ crystals.
diffractometer. A numerical absorption correction using the programs XRED [12] and XSHAPE [13] was applied. The crystal structure was solved by using direct methods with SHELXS [14]. The refinement of the structure was carried out by the method of least-squares using SHELXL [14]. The chemical composition was confirmed by energy dispersive X-ray spectroscopy (EDX) using a JSM-6500F scanning microscope (Jeol) provided with a Si/Li EDX detector (Oxford Instruments, model 7418). Optical spectra of $\mathrm{LiBa}_{5} \mathrm{GaN}_{3} \mathrm{~F}_{5}$ were measured with a modified microcrystal spectrophotometer CARY 17 (Spectra Services, ANU Canberra, Australia) [15-17]. Calculations of the band gap were carried out with the program package WIEN2K [18] utilizing the structural data from the single-crystal structure refinement.

Further details of the crystal structure investigations can be obtained from the Fachinformationzentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (Fax: +49-7247-808-666; E-Mail: crysdata@fiz-karlsruhe.de) on quoting the depository number CSD-421592.

3. Results and discussion

3.1. Crystal structure

The crystal structure was solved and refined in orthorhombic space group Pnma (no. 62) with $a=15.456(3), b=5.707$ (1) and $c=12.259(3) \AA$. The crystallographic data of $\mathrm{LiBa}_{5} \mathrm{GaN}_{3} \mathrm{~F}_{5}$ is summarized in Table 1, the atomic coordinates and the isotropic displacement parameters are listed in Table 2.

In the crystal $\mathrm{LiBa}_{5} \mathrm{GaN}_{3} \mathrm{~F}_{5}$ zigzag chains of vertex sharing LiF_{6} octahedrons running along [010] (cf. Fig. 2). Perpendicular to these chains, Ba atoms are arranged in layers. Likewise perpendicular to [010] "isolated" trigonal planar $\left[\mathrm{GaN}_{3}\right]^{6-}$ ions are found. The $\mathrm{Ga}-\mathrm{N}$ bond-lengths range from 1.90 to $1.95 \AA$ (Fig. 3) and agree well with the sum of the ionic radii [19-21] as well as with typical Ga-N distances (e.g., $\mathrm{Sr}_{4} \mathrm{GaN}_{3} \mathrm{O}, \mathrm{Ga}-\mathrm{N}: 1.88-1.92 \AA$ Å) [5]. Similar [GaN $]_{3}{ }^{6-}$ ions have been found in $\mathrm{Sr}_{3} \mathrm{GaN}_{3}, \mathrm{Sr}_{6} \mathrm{GaN}_{5}$ [2], $\mathrm{Sr}_{4} \mathrm{GaN}_{3} \mathrm{O}$ and $\mathrm{Sr}_{4} \mathrm{GaN}_{3}\left(\mathrm{CN}_{2}\right)$ [5]. The coordination sphere of the trigonal planar $\left[\mathrm{GaN}_{3}\right]^{6-}$ ions can be described as three-capped trigonal prisms of Ba^{2+} atoms. In $\mathrm{Sr}_{3} \mathrm{GaN}_{3}$ [2] similar trigonal prism of Sr^{2+} atoms have been observed. The N^{3-} atoms are likewise surrounded in distorted octahedrons of five Ba^{2+} and one Ga^{3+} atom.

Table 1
Crystallographic data of $\mathrm{LiBa}_{5} \mathrm{GaN}_{3} \mathrm{~F}_{5}$.

Formula	$\mathrm{LiBa}_{5} \mathrm{GaN}_{3} \mathrm{~F}_{5}$
Crystal system	orthorhombic
Space group	Pnma (no. 62$)$
Lattice parameters (\AA))	$a=15.456(3), b=5.707(1), c=12.259(3)$
Cell volume $\left(\AA^{3}\right)$	$1081.3(4)$
Formula units per unit cell	4
Density $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	5.531
$\mu\left(\mathrm{~mm}^{-1}\right)$	20.41
$\mathrm{~T}(\mathrm{~K})$	$293(2)$
$\mathrm{F}(000)$	1520
Profile range	$5.8 \leq 2 \theta \leq 63.2$
Index ranges	$-20 \leq h \leq 18$
	$-6 \leq k \leq 6$
Independent reflections	$-15 \leq l \leq 15$
Refined parameters	$1286[R($ int $)=0.072]$
Goodness of fit	89
R_{1} (all data); $R_{1}\left(F^{2}>2 \sigma\left(F^{2}\right)\right)$	1.057
$w R_{2}($ all data $) ; w R_{2}\left(F^{2}>2 \sigma\left(F^{2}\right)\right)$	$0.0230,0.0212$
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	$0.0512,0.0505$
	$1.56,-2.13$

Li^{+}does not directly coordinate to the $\left[\mathrm{GaN}_{3}\right]^{6-}$ ions but is surrounded by six F^{-}in a distorted octahedron. The $\mathrm{Li}-\mathrm{F}$ distances are ranging between 1.97 and $1.98 \AA$ for the equatorial F2 and F1 and $2.33-2.39 \AA$ for the axial F3 and F4 (cf. Fig. 3). The latter ones exceed significantly the sum of the ionic radii ($2.06 \AA$) [19] while the equatorial $\mathrm{Li}-\mathrm{F}$ distances are slightly shorter than reported distances in other LiF_{6} octahedrons ($\mathrm{K}_{2} \mathrm{LiAlF}_{6}, \mathrm{Li}-\mathrm{F}: 2.109 \AA$) [22,23]. In the second coordination sphere, the octahedron LiF_{6} is coordinated by eight Ba^{2+} in a cubic way, comparable with the cubic Ca^{2+}-coordination of Ti^{4+} in CaTiO_{3}. The coordination of F^{-} occurs in distorted octahedrons of five Ba^{2+} and one Li^{+}. Only F2 is coordinated by two Li^{+}and four Ba^{2+}. The atomic distances $\mathrm{Ba}-\mathrm{F}$ and $\mathrm{Li}-\mathrm{F}$ are mentioned above. The thermal displacement parameter $U_{\text {iso }}{ }^{*} / U_{\text {eq }}$ of F4 is considerably higher (cf. Table 3) in comparison with the other values for fluorine atoms. One reason for this observation may be the fact, that - considering the octahedron LiF_{6} - the F4 atom is a "free" one and does not connect to the next octahedrons. Additionally, the U_{11} value for F 4 is almost three times higher than the values for the other F^{-}. The short distance between Ba4-F4 (2.83 Å) may be responsible for this observation. The F3 atom has an even shorter distance to Ba4 ($2.76 \AA \AA$) and is also a non-bridging one. Here we can also observe a little higher $U_{\text {iso }}{ }^{*} / U_{\text {eq }}$ value.

Table 2
Atomic coordinates and isotropic displacement parameters $\left(\AA^{2}\right)$ of $\mathrm{LiBa}_{5} \mathrm{GaN}_{3} \mathrm{~F}_{5}$, standard deviations in parentheses.

Atom	Wyckoff position	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Ba1	$4 c$	$0.43534(2)$	$1 / 4$	$0.68180(2)$	$0.0092(1)$
Ba2	$4 c$	$0.51012(2)$	$-1 / 4$	$0.87769(3)$	$0.0090(1)$
Ba3	$4 c$	$0.34365(2)$	$-1 / 4$	$0.47028(3)$	$0.0089(1)$
Ba4	$4 c$	$0.24513(2)$	$-1 / 4$	$0.77891(3)$	$0.0100(1)$
Ba5	$4 c$	$0.16417(2)$	$1 / 4$	$0.63252(2)$	$0.0109(1)$
Ga1	$4 c$	$0.35910(4)$	$1 / 4$	$0.92467(4)$	$0.0076(2)$
F1	$8 d$	$0.4111(2)$	$0.0121(5)$	$0.3013(2)$	$0.0151(6)$
F2	$4 a$	$1 / 2$	0	$1 / 2$	$0.0131(7)$
F3	$4 c$	$0.4075(3)$	$-1 / 4$	$0.6854(3)$	$0.0171(8)$
F4	$4 c$	$0.1779(4)$	$-1 / 4$	$0.9936(3)$	$0.027(1)$
N1	$4 c$	$0.4799(4)$	$1 / 4$	$0.8980(4)$	$0.014(2)$
N2	$4 c$	$0.2813(4)$	$1 / 4$	$0.8020(4)$	$0.013(2)$
N3	$4 c$	$0.3152(4)$	$1 / 4$	$1.0734(5)$	$0.012(2)$
Li1	$4 c$	$0.459(2)$	$1 / 4$	$0.4020(8)$	$0.026(3)$

https://daneshyari.com/en/article/1505565

Download Persian Version:

https://daneshyari.com/article/1505565

Daneshyari.com

[^0]: * Corresponding author. Tel.: +49 892180 77436; fax: +49 89218077440.

 E-mail address: wolfgang.schnick@uni-muenchen.de (W. Schnick).

