ELSEVIER

Contents lists available at ScienceDirect

Solid State Sciences

journal homepage: www.elsevier.com/locate/ssscie

Gas sensing selectivity of hexagonal and monoclinic WO₃ to H₂S

Imre Miklós Szilágyi ^{a,*}, Sami Saukko ^b, János Mizsei ^c, Attila L. Tóth ^d, János Madarász ^e, György Pokol ^e

- ^a Materials Structure and Modeling Research Group of the Hungarian Academy of Sciences, Budapest University of Technology and Economics, Department of Inorganic and Analytical Chemistry, H-1111 Budapest, Szt. Gellért tér 4, Hungary
- ^b Microelectronics and Materials Physics Laboratories, University of Oulu, FIN-90014 Oulu, Finland
- ^c Department of Electron Devices, Budapest University of Technology and Economics, Goldmann Gy. ter 3, Budapest 1521, Hungary
- d Research Institute for Technical Physics and Materials Science, Hungarian Academy of Sciences, H-1121 Konkoly-Thege út 29-33, Budapest, Hungary
- e Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1111 Budapest, Szt. Gellért tér 4, Hungary

ARTICLE INFO

Article history:
Received 22 November 2008
Received in revised form
9 November 2009
Accepted 10 January 2010
Available online 18 January 2010

Keywords: Tungsten oxide Hexagonal Monoclinic Gas sensor Selectivity H₂S

ABSTRACT

Hexagonal and monoclinic tungsten oxide (h- and m-WO₃) samples were produced by annealing hexagonal ammonium tungsten bronze, $(NH_4)_{0.07}(NH_3)_{0.04}(H_2O)_{0.09}WO_{2.95}$ at 470 and at 600 °C, respectively. Their structure, composition and morphology were analyzed by XRD, Raman, XPS, ¹H-MAS NMR and SEM. In order to study the effect of crystal structure on the gas sensitivity of tungsten oxides, h- and m-WO₃ were tested as gas sensors to CH₄, CO, H₂, NO and H₂S (1000 and 10 ppm) at 200 °C. Monoclinic WO₃ responded to all gases, but its gas sensing signal was two magnitudes greater to 10 ppm H₂S than to other gases, and it also detected H₂S even at 25 °C. Hexagonal WO₃ responded only to 10 ppm H₂S. Its sensitivity was smaller compared to m-WO₃, however, the response time of h-WO₃ was significantly faster. The gas sensing tests showed that while m-WO₃ had relative selectivity to H₂S in the presence CH₄, CO, H₂, NO; h-WO₃ had absolute selectivity to H₂S in the presence these gases.

© 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

Several semiconductor oxides (e.g. SnO₂, In₂O₃, ZnO₂, TiO₂, etc.) are excellent gas sensors due to their high sensitivity to various gases (EtOH, H₂, NH₃, NO, CO, H₂S, O₃, H₂O, etc.) [1–4], though gas selectivity is still a great challenge. The different polymorphs of these materials may have different gas sensitivity (e.g. in the case of TiO₂, the anatase phase has better performance as gas sensor than the rutile phase [4]).

WO₃ is an n-type semiconductor, and it is one of the most studied oxide materials for gas sensing [5,6]. Generally the monoclinic (m-) polymorph of WO₃ is used in gas sensors. However, WO₃ has other (e.g. hexagonal, pyrochlore) polymorphs also [7] and recent studies showed that hexagonal (h-) WO₃ had considerable gas sensitivity [8–11]. Though h-WO₃ can be prepared in many ways (e.g. by hydrothermal treatment of alkali tungstates [8,9,12], by thermal evaporation and oxidation of tungsten metal [13], by thermal [11,14,15] or wet chemical [16] oxidation of hexagonal ammonium tungsten bronze, by thermal

oxidation of ammonium polytungstates [17]), the most frequently used preparation method is the hydrothermal synthesis. Recently it was shown that the h-WO₃ sample prepared by annealing hexagonal ammonium tungsten bronze (HATB), (NH₄)_xWO₃, was more sensitive to NH₃, than the h-WO₃ sample prepared hydrothermally [8,9,11].

Since there were relatively few reports on the gas sensitivity of h-WO₃ [8–11], and mostly it was tested to NH₃, we intended to study it for sensing other gases. Our aim was to explore, if the hexagonal polymorph of WO₃ had different gas sensing properties than monoclinic WO₃ – similarly to TiO_2 .

Therefore, we prepared h- and m-WO₃ by annealing HATB in air at 470 and at 600 °C, respectively. The use of the same precursor, and the similar preparation route ensured that h- and m-WO₃ had similar morphology and thus their gas sensing property could be compared in a reliable way. The structure, composition and morphology of h- and m-WO₃ were analyzed by X-ray powder diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), solid state ¹H-MAS (magic angle spinning) NMR spectroscopy and scanning electron microscopy (SEM). The gas sensitivity of tungsten oxides was tested to CH₄, CO, H₂, NO and H₂S (1000 and 10 ppm) at 200 °C.

^{*} Corresponding author. Tel.: +36 1 463 4047; fax: +36 1 463 3408. E-mail address: imre.szilagyi@mail.bme.hu (I.M. Szilágyi).

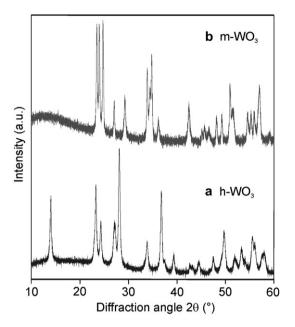


Fig. 1. XRD patterns of (a) h-WO₃; (b) m-WO₃.

2. Experimental

The h-WO₃ sample was prepared by annealing hexagonal ammonium tungsten bronze (HATB), $(NH_4)_{0.07}(NH_3)_{0.04}(H_2O)_{0.09}$ WO_{2.95} in air at 470 °C [11]. The m-WO₃ sample was prepared by annealing HATB in air at 600 °C [11]. The HATB precursor was prepared by annealing ammonium paratungstate tetrahydrate, $(NH_4)_{10}[H_2W_{12}O_{42}]\cdot 4H_2O$, in H_2 at 400 °C [18].

XRD pattern of h-WO₃ was obtained by a PANalytical X'pert Pro MPD X-ray diffractometer equipped with an X'Celerator detector using Cu K_{α} radiation.

Raman spectra were collected by a Jobin Yvon Labram instrument attached to an Olympus BX41 microscope. Frequency doubled Nd–YAG laser (532 nm) was applied as exciting source with 1 mW applied power.

XPS spectra were recorded on a VG Microtech instrument using Mg K_{α} radiation. The spectrometer was calibrated with the binding energy of the C1s line (284.5 eV).

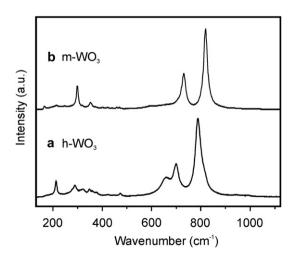
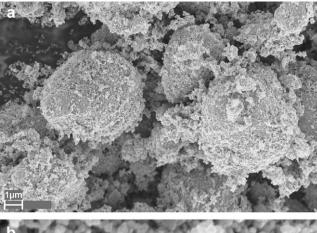
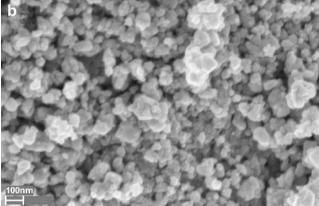
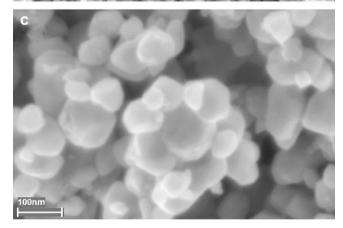





Fig. 2. Raman spectra of (a) $h\text{-WO}_3$; (b) $m\text{-WO}_3$.

Fig. 3. SEM images of (a) micro-meter sized scale aggregated blocks of h-WO₃; (b) nanoparticles of h-WO₃; (c) nanoparticles of m-WO₃.

 $^1\text{H-MAS}$ NMR experiments were carried out on a VARIAN NMR SYSTEM spectrometer (600 MHz for $^1\text{H})$ using a 3.2 mm HXY VARIAN/Chemagnetics probe. ^1H chemical shifts were referenced to adamantane ($\delta_{1H}=0$ ppm). Spectra were recorded under the same experimental conditions. 16 transients were acquired at 12 kHz spinning rate and a recycle delay of 20 s was used. Background suppression DEPTH [19] was employed to remove signals from the probe.

SEM characterization was performed by a LEO-1550 FEG SEM instrument.

To measure the gas sensitivity, Al_2O_3 sensors sheets with Pt electrical contact were used. Sensing layers were produced by drop coating the sensor sheets with dispersions of h-WO₃ and m-WO₃ in ethanol. Sensing properties were tested to different

Download English Version:

https://daneshyari.com/en/article/1506061

Download Persian Version:

https://daneshyari.com/article/1506061

Daneshyari.com