

Available online at www.sciencedirect.com

Solid State Sciences 8 (2006) 1041-1045

www.elsevier.com/locate/ssscie

Na₃Ru₂(hedp)₂·4H₂O: A mixed valent diruthenium diphosphonate with three-dimensional structure

Bin Liu, Yi-Zhi Li, Li-Min Zheng*

State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Nanjing University, Nanjing 210093, PR China

Received 25 May 2005; received in revised form 11 September 2005; accepted 14 December 2005

Available online 5 June 2006

Abstract

Hydrothermal treatment of RuCl₃, hedpH₄ [hedp = 1-hydroxyethylidenediphosphonate, CH₃C(OH)(PO₃)₂] and NaOH at 180 °C gives a mixed valence diruthenium(II,III) compound Na₃Ru₂(hedp)₂·4H₂O (1). In this compound, the paddlewheel diruthenium units of Ru₂(hedp)₂³⁻ are cross-linked into a square-grid layer. The layers are further connected through {NaO₆} octahedra, forming a three-dimensional framework structure. Crystal data: monoclinic, space group *C2/c*, *a* = 19.285(5), *b* = 9.528(3), *c* = 10.050(3) Å, β = 96.499(5), *V* = 1834.8(9) Å³, *Z* = 4. Ferromagnetic interactions are mediated between the Ru₂(hedp)₂³⁻ dimers within the layer.

© 2000 Eisevier SAS. All fights festived.

Keywords: Diruthenium complex; Crystal structure; Magnetic property; Phosphonate

1. Introduction

In recent years, the design and syntheses of extended networks with novel topologies is of great interest owing to their potential for many applications [1]. The utility of metal-metal bonded dinuclear complexes, which bear unique structural and physical properties, in the assembly of these network structures provides a new area of supramolecular chemistry. Particular attention has been paid to the paramagnetic diruthenium units such as Ru₂(O₂CR)₄ⁿ⁺ (n = 1, 0) [2]. The mixed-valent Ru₂(O₂CR)₄⁺ cation is of special interest because it has a $\sigma^2 \pi^4 \delta^2 \pi^{*2} \delta^{*1}$ electronic configuration. The π^* and δ^* orbitals are nearly degenerate, resulting in a high-spin S = 3/2 ground state [3]. By combining diruthenium tetracarboxylates with inorganic or organic bridging ligands, many compounds with chain structures [4] and a few compounds with two- and threedimensional structures [5,6] have been obtained.

Compared with the researches involving diruthenium tetracarboxylates, those concerning diruthenium phosphonates are rare. Based on 1-hydroxyethylidenediphosphonate [CH₃-

^c Corresponding author. Fax: +86 25 83314502.

E-mail address: lmzheng@netra.nju.edu.cn (L.-M. Zheng).

C(OH)(PO₃)₂, hedp], we have synthesized complexes Na₄Ru₂-(hedp)₂X·16H₂O (X = Cl, Br) and Na₇[Ru₂(hedp)₂Fe(CN)₆]. 24H₂O with one-dimensional structures [7], and compound (NH₄)₃Ru₂(hedp)₂·2H₂O with a two-dimensional structure [8]. All possess a mixed-valent paddlewheel core of Ru₂(hedp)₂³⁻, similar to that of Ru₂(O₂CR)₄⁺. In this paper we report the hydrothermal synthesis of a new diruthenium phosphonate with a 3D framework structure, namely, Na₃Ru₂(hedp)₂·4H₂O (1).

2. Experimental

2.1. Materials and methods

All the starting materials were of reagent quality and were obtained from commercial sources without further purification. Elemental analysis was performed on a Perkin Elmer 240C elemental analyzer. IR spectrum was obtained as a KBr disk on a VECTOR 22 spectrometer. Thermal analysis was performed in nitrogen with a heating rate of 20 °C/min on a TGA-DTA V1.1 TA Inst 2100 instrument. Variable-temperature magnetic susceptibility data were obtained on polycrystalline sample (26.68 mg) from 2 to 300 K in a magnetic field of 2 kOe using a Quantum Design SQUID magnetometer.

^{1293-2558/\$ -} see front matter @ 2006 Elsevier SAS. All rights reserved. doi:10.1016/j.solidstatesciences.2005.12.016

Fig. 1. UV-vis spectrum of compound 1.

2.2. Synthesis of $Na_3Ru_2(hedp)_2 \cdot 4H_2O(1)$

A mixture of RuCl₃ \cdot 3.5H₂O (0.38 mmol, 0.1015 g), hedpH₄ \cdot H₂O (1.50 mmol, 0.3367 g) in 4 mL of H₂O, adjusted to pH = 4.70 with 1M NaOH, was kept in a Teflon-lined autoclave at 180 °C for 4 days. After slow cooling to room temperature, brown-red block crystals were collected as a monophasic material, as judged by the powder X-ray diffraction pattern. Yield: 0.1302 g (97% based on Ru). Anal. found (calcd) for C4H17O18P4Na3Ru2: C, 6.54 (6.42); H, 1.74 (2.15)%. IR (KBr, cm⁻¹): 3513(br, s), 3378(br, s), 1671(m), 1618(m), 1458(m), 1192(s), 1157(m), 1110(vs), 1050(m), 988(m), 958(s), 950(s), 791(s), 730(m), 695(m), 580(s), 568(s), 509(m), 449(m). Thermal analysis shows that the weight loss in the temperature range 20-220 °C is 10.7%, slightly higher than the calculated value for the release of four water molecules (9.6%). The weight loss above 400 °C is due to the decomposition of the organophosphonate ligand and the collapse of the lattice structure. The final product was not characterized. The infrared spectrum exhibits a series of bands in the 1000-1157 cm⁻¹ range, corresponding to the vibrations of phosphonate PO₃ groups. The diffuse reflectance spectrum gives a major band at ca. 500 nm and a weak band at ca. 980 nm (Fig. 1) which are assigned to the $\pi(\text{Ru-O}, \text{Ru}_2) \rightarrow \pi^*(\text{Ru}_2)$ and $\delta(\text{Ru}_2) \rightarrow \delta^*(\text{Ru}_2)$ transitions, respectively, in agreement with the mixed-valent nature of the compound [9].

2.3. Crystallographic studies

A single crystal of dimensions $0.24 \times 0.26 \times 0.32$ mm for **1** was selected for indexing and intensity data collection at 293 K on a Bruker SMART APEX CCD diffractometer equipped with graphite-monochromatized Mo K_{α} ($\lambda = 0.71073$ Å) radiation. A hemisphere of data was collected in the θ range 2.13–25.99° using a narrow-frame method with scan widths of 0.30° in ω and exposure time of 10 s/frame. The numbers of measured, unique and observed reflections $[I > 2\sigma(I)]$ are 4634, 1785 and 1312 ($R_{\text{int}} = 0.040$), respectively. The data were integrated using the Siemens SAINT program [10], with the intensities corrected for Lorentz factor, polarization, air absorption, and absorption due to variation in the path length through

Table 1	
Crystallographic data for 1	

Formula	$C_4H_{16}O_{18}P_4Na_3Ru_2$		
Μ	747.16		
Crystal system	Monoclinic		
Space group	C2/c		
a (Å)	19.285(5)		
<i>b</i> (Å)	9.528(3)		
<i>c</i> (Å)	10.050(3)		
β (°)	96.499(5)		
V (Å ³)	1834.8(9)		
Ζ	4		
$D ({\rm g}{\rm cm}^{-3})$	2.705		
F(000)	1460		
Goodness-of-fit on F^2	1.086		
$R1, wR2 [I > 2\sigma(I)]^{a}$	0.0523, 0.0966		
R1, wR2 (all data) ^a	0.0764, 0.0997		
$(\Delta \rho)_{\text{max}}, (\Delta \rho)_{\text{min}} (e \text{ Å}^{-3})$	1.059, -0.841		

Table 2

Atomic coordinates and equivalent isotropic displacement parameters for 1. U_{eq} is defined as one third of the trace of the orthogonalized U_{ii} tensor

• uq ===						
Atom	x/a	y/b	z/c	U_{eq}		
Ru(1)	0.2671(1)	0.2041(1)	0.6074(1)	0.0312(2)		
Na(1)	0.3217(1)	-0.3785(3)	0.4069(2)	0.0296(8)		
Na(2)	1/2	0.4310(4)	1/4	0.0362(12)		
P(1)	0.2959(1)	0.0073(2)	0.3850(2)	0.0278(5)		
P(2)	0.3900(1)	0.2572(2)	0.4517(2)	0.0303(6)		
O(1)	0.2803(2)	0.0056(5)	0.5327(4)	0.0268(14)		
O(1W)	0.4377(2)	-0.3669(5)	0.3435(4)	0.0339(14)		
O(2)	0.2434(2)	0.1067(5)	0.3044(4)	0.0262(14)		
O(2W)	0.3791(2)	0.4236(5)	0.1259(4)	0.0321(16)		
O(3)	0.2937(2)	-0.1396(5)	0.3286(5)	0.0336(17)		
O(4)	0.3694(2)	0.2485(5)	0.5979(4)	0.0308(16)		
O(5)	0.3320(2)	0.3491(5)	0.3686(4)	0.0313(16)		
O(6)	0.4613(2)	0.3125(5)	0.4407(4)	0.0285(14)		
O(7)	0.4366(2)	-0.0111(5)	0.4370(5)	0.0400(16)		
C(1)	0.3858(4)	0.0702(8)	0.3926(8)	0.042(3)		
C(2)	0.4073(4)	0.0772(8)	0.2507(7)	0.038(3)		

the detector faceplate. Empirical absorption correction was applied.

The structure was solved by direct method and refined on F^2 by full-matrix least squares using SHELXTL [11]. All the non-hydrogen atoms were refined anisotropically. The hydrogen atoms were placed in calculated positions (C–H = 0.96 Å, O–H = 0.85 Å). In the final Fourier difference map, the deepest hole was $-0.841 \text{ e } \text{Å}^{-3}$ and the highest peak 1.059 e Å⁻³. Crystallographic and refinement details are listed in Table 1. The atomic coordinates and selected bond lengths and angles are given in Tables 2 and 3, respectively.

3. Results and discussion

3.1. Synthesis

In a previous communication, we reported the hydrothermal synthesis of compound $(NH_4)_3Ru_2(hedp)_2 \cdot 2H_2O$ [8] where the NH₄⁺ cations occupy the spaces within and between the layers of $\{Ru_2(hedp)_2\}_n^{3n-}$. Investigations were then carried

Download English Version:

https://daneshyari.com/en/article/1506914

Download Persian Version:

https://daneshyari.com/article/1506914

Daneshyari.com