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a  b  s  t  r  a  c  t

In  biophysics,  the structural  prediction  of  protein–protein  complexes  starting  from  the  unbound  form  of
the  two  interacting  monomers  is a  major  difficulty.  Although  current  computational  docking  protocols
are able  to  generate  near-native  solutions  in  a  reasonable  time,  the problem  of  identifying  near-native
conformations  from  a pool  of  solutions  remains  very  challenging.  In this  study,  we  use  molecular  dynam-
ics  simulations  driven  by a  collective  reaction  coordinate  to optimize  full hydrogen  bond  networks  in a
set of  protein–protein  docking  solutions.  The  collective  coordinate  biases  the  system  to  maximize  the
formation  of  hydrogen  bonds  at the  protein–protein  interface  as  well  as all  over  the  structure.  The reac-
tion  coordinate  is therefore  a measure  for docking  poses  affinity  and  hence  is used  as  scoring  function  to
identify  near-native  conformations.

©  2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

As most biological processes involve macromolecular com-
plexes, identifying and characterizing protein interactions as well
as the network they create, is critical for understanding the molec-
ular mechanisms within the cell. Protein–protein interactions are
fundamental in most cellular processes as for example DNA repli-
cation or signal transduction. Knowledge of the structure and
properties of protein–protein complexes is essential to understand
how proteins function within the cell, in order to identify new
targets for therapeutic applications and develop new approaches
for drug discovery. Hence, solving the structure of protein–protein
complexes might provide the basis for understanding how a biolog-
ical signal is transmitted or how a biological function is performed
(Smith and Sternberg, 2002).

Many docking algorithms rely on the divide-and-conquer strat-
egy (Luo et al., 2010): first, an initial sampling of the configurational
space of the interacting proteins is performed by an efficient
algorithm specialized on generating docking candidates (or solu-
tions), typically rigid-body or coarse-grained, based and optimized
through Fast Fourier Transform (FFT). Second, a scoring step is
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performed to rank the candidates according to scoring functions
that can offer different levels of complexity (Halperin et al., 2002).
However, the arduousness of sampling and scoring is not equal,
while modern supercomputers allow for very good sampling of the
configurational space between two  proteins, there are no efficient
and accurate methods for refinement and scoring yet. Conse-
quently, even though near-native poses could be generated, it is
still extremely difficult to distinguish them from a pool of solu-
tions, making docking protocols to produce significant amounts
of false positives (Gabb et al., 1997; Chen et al., 2003). Therefore,
efficient computational docking highly depends on the accuracy
of the energy functions used to evaluate the strength of binding
candidates.

Unfortunately, because of bad protein modeling (missing ions,
heteroatoms or unrealistic inter-protein contacts generated by
rigid-body docking) scoring is currently a serious issue. The energy
function used for scoring analyzes the conformation of both pro-
teins in complex molecule and outputs a value representing a
total energy. This number is meaningless alone, but when used
in a relative way  to compare the evolution of the total energy
along the conformational changes that the proteins suffered, it
gives an idea of how stable the different docking conformations
are. Then, computational studies of protein associations from an
energetic point of view, are also important to comprehend their
essential principles and thus to improve protein interaction mod-
eling. Energetic landscapes represent at different smoothness the
natural behavior of protein–protein interactions. Their knowledge
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allow to predict stable configurational and conformational spaces,
such as the binding funnel. Unfortunately for mathematical simpli-
fications, protein binding energy landscapes are extremely rugged
surfaces (Camacho and Vajda, 2001; Hagler et al., 1974a; Hagler and
Lifson, 1974b). Since interacting forces upon protein binding act
at different length-scales, the spatial frequency spectrum shows
rapid variations and though generates many wells of local min-
ima. For this reason, many times search algorithms are confined
to a small portion of the sampling space (Phillips et al., 2001),
since characterizing every minima of the potential energy land-
scape of a geometry is a problem with tens to thousands of degrees
of freedom (Crescenzi et al., 1998; Atkins and Hart, 1999; Calland,
2003). However, the energy funnel shape is generally observed
in the vicinities of the bound form of protein–protein complexes,
once optimal interface residue conformations have been reached
(Camacho and Vajda, 2001). In general, to test the performance
of force-fields in docking applications, the native complex and
the lowest energy near-native solution generated by a docking
approach are compared energetically (Dixon, 1997; Totrov and
Abagyan, 1997). However, this procedure is artificial and may  lead
to incorrect conclusions (Verkhivker et al., 2000). In a complete
docking protocol the possibility to correctly identify near-native
conformations as the lowest energy ones stands on the ability of
the sampling process to generate them (Diller and Verlinde, 1999).
The gradually narrowing of the energetic landscape has a physi-
cal meaning in protein–protein docking: there are large amounts
of unfavorable high energy poses while only a small part of the
configurational space is energetically stable.

Among macromolecular biological interactions hydrogen bond
networks are specially interesting due to their key role in pro-
tein 3D structure, and as a consequence, in molecular recognition
specificity and protein function (Morozov et al., 2004). Thus the
appropriate description of their energetics is of great interest in
the fields of protein–protein docking and protein folding. In com-
puter simulations the challenging problem emerging from using
crystallographic protein structure from the PDB (www.pdb.org) is
to position every hydrogen atom. Indeed, the optimization of full
hydrogen bond networks requires force-fields to properly describe
every possible hydrogen configurations and their interaction ener-
gies (Masone et al., 2013). But as observed in previous studies,
molecular mechanics force fields show poor accuracy in describ-
ing hydrogen bond physics (Fabiola et al., 2002; Hu et al., 2003; Lii
and Allinger, 1994, 1998; Morozov et al., 2004; Masone et al., 2012).

Molecular dynamics is the tool by excellence to exhaustively
explore the protein potential energy landscape while simulating its
flexibility. Fully flexible relaxation tends to increase the amount of
recovered native contacts among sets of docking poses (Król et al.,
2007a, 2007b). However, it is impossible to assure that extensive
molecular dynamics simulations will result in good conformers
suitable for docking. Moreover, determining the most important
motions for binding purposes and then performing docking exper-
iments may  result in equivalent solutions as flexible docking
(Cozzini et al., 2008). As pointed out by Alonso and collaborators
(Alonso et al., 2006) molecular dynamics have shown to accurately,
although expensively, refine a few selected candidates from a previ-
ous fast docking stage used to sample large configurational spaces.
The full atomistic description in long, and though useful, time scales
are still beyond classical molecular dynamics simulations for most
biological systems due to the small femtosecond time steps needed
for energy conservation. Moreover, crystallographic monomers of
a protein–protein complex cannot provide enough information on
how interface rearrangements will occur. Hence, in these cases clas-
sical molecular dynamics can achieve only a limited phase-space
exploration (Tiwary and van de Walle, 2013).

Remarkably, collective variable driven molecular dynamics have
shown to adequately reproduce complex conformational changes

Table 1
Selected complexes from Vakser et al. decoy. Complexi: pdb code of co-crystallized
structure. Rec.ii: pdb code of unbound receptor structure. RMSDiii: C alpha rmsd
of  unbound receptor and co-crystallized structure [Å]. Lig.iv: pdb code of unbound
ligand structure. RMSDv: C alpha rmsd of unbound ligand and co-crystallized struc-
ture [Å]. RMSDvi: The ligand RMSD of the best near-native solution [Å]. HITSvii: The
number of near-native solution kept in each decoy set. H-bondviii: The ranking
position of the first near-native conformation identified.

Complexi Rec.ii RMSDiii Lig.iv RMSDv RMSDvi Hitsvii H-bondviii

1bvn 1hx0 0.63 1ok0 0.42 2.24 10 1
1tmq 1jae 0.77 1b1u 1.42 2.07 10 19
1ugh 1akz 0.61 1ugi 2.60 2.86 10 9
1xd3 1uch 2.45 1yj1 2.73 3.64 10 5
3sic  1sup 0.34 3ssi 0.78 3.54 10 2

in biomolecules by accelerating rare events (Fiorin et al., 2013).
When biasing the system with a previously chosen collective
reaction coordinate, molecular dynamics simulations may surpass
intrinsic limitations of the physical model and a more efficient sta-
tistical sampling can be performed. However, it is usually difficult to
select the proper collective variable that adequately describes the
macroscopic phenomena (Fiorin et al., 2013; Laio and Parrinello,
2002; Laio and Gervasio, 2008; Kumar et al., 1996).

The purpose of this work is to propose a collective coordinate to
optimize hydrogen bond networks in protein–protein systems by
driving molecular dynamics simulations. The collective coordinate
is then a measure of the hydrogen bond formation in each docking
solution and though is used as a scoring function.

2. Materials and methods

We  used the DockGround (Liu et al., 2008) set of protein–protein
solutions generated by Vakser and collaborators, freely available
on-line (http://dockground.bioinformatics.ku.edu/) that provides
100 non-native and at least one near-native (ligand RMSD < 5 Å)
solution generated by GRAMM-X (Tovchigrechko and Vakser, 2006)
docking scan per complex for a total of 61 complexes. To select
our complexes we chose three (1xd3, 1ugh, 3sic) that were not
included in a previous study in hydrogen bond network opti-
mizations (Masone et al., 2012) using the software PELE (Borrelli
et al., 2005), but still containing 10 near-native solutions in the
DockGround decoy. Other two  complexes that did were studied
before (1bvn, 1tmq) were also selected for validation purposes (see
Table 1). In all of them the condition that the ligand RMSD to the
crystal reference is 5 Å or less for at least one of the poses in the
decoy was  fulfilled. Previous studies in protein–protein (Masone
et al., 2012) and protein–ligand interactions (Borrelli et al., 2010)
show that refinement techniques can only return near-native top
scores if at least one of the poses in the decoy is close enough to the
crystallographic reference. Fig. 1 shows the configurational space
explored by the docking scan for the 1bvn protein–protein system.

We performed molecular dynamics in GROMACS 4.5.5 (Hess
et al., 2008) patched with PLUMED 1.3 (Bonomi et al., 2009) to
use a collective reaction coordinate in order to drive the system
into the formation of hydrogen bonds. The PLUMED code provides
a variety of different collective variables to performed free-energy
calculations. The collective variable we  used, available in PLUMED
1.3, counts the number of intra-molecular hydrogen bonds between
a group donors and acceptors and it is defined as follows:

s =
∑

ij

1 − (dij/r0)n

1 − (dij/r0)m (1)

where i counts over the group of donors and j  over the group of
acceptors. For dij distance calculations all donor–acceptor pairs
were included and the user defined values where set to r0 = 2.5,
n = 6 and m = 12. As a general rule, the two  monomers of a
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