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The magnetocaloric effect is the thermal response of a material to an external magnetic field. This
manuscript focuses on the physics and the properties of materials which are commonly used for
magnetic refrigeration at cryogenic temperatures. After a brief overview of the magnetocaloric effect
and associated thermodynamics, typical requirements on refrigerants are discussed from a standpoint
of cooling power density optimization. Finally, a compilation of the most important properties of several
common magnetocaloric materials is presented.
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1. Magnetic refrigeration

Magnetic refrigeration is employed to provide cooling over
many orders of magnitude of temperature, from a few hundred
Picokelvin which have been reached with nuclear demagnetization
refrigerators [1] to several hundred Kelvin [2,3]. The magnetocalo-
ric effect, which provides the basis for these refrigeration tech-
niques, is discussed by Shirron [4]. For low temperature
applications, the reader’s attention is also drawn to Ambler’s and
Hudson'’s review of magnetic cooling below 1K [5].

Adiabatic Demagnetization Refrigerators (ADRs) are typically
used in the temperature range between a few Millikelvin and a
few Kelvin. In this temperature range, ADRs mainly compete with
3He/*He dilution refrigerators and *He sorption coolers; ADRs have
the advantage of more efficient and more accurate temperature
control and are thus commonly used to cool low temperature
detectors, both in laboratory environments and on spacecraft
(e.g. [6,7]). The thermodynamics of ADRs are described in [8].

In Active Magnetic Regenerators (AMRs), the refrigerant mate-
rial and the regenerator material are combined into one. This con-
cept allows for the construction of efficient and compact
refrigerators. AMRs are being researched for gas liquefaction (e.g.
hydrogen [9]), as well as for room temperature refrigeration [10].
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The working principle and the thermodynamics of AMRs are
described in [11].

The basic principles underlying magnetic refrigeration (with
the exception of nuclear demagnetization, which is discussed
in [12]) will be reviewed in this introductory section. For
more details, reference is made to textbooks such as [13-15]
or [16].

1.1. The magnetocaloric effect

The entropy of a magnetocaloric material is the sum of three
independent constituents, namely the magnetic entropy S, the
entropy of the lattice S; and the entropy of the conduction electrons
Se:

S = Su(B,T) + S(T) + So(T). (1)

The magnitude of all constituents depends on the temperature T,
while the magnitude of S, has an additional strong dependence
on the external magnetic field density B. S; and S, can be neglected
at low temperatures, as S, is much larger than S; and S, combined in
that regime.

On a microscopic level, the magnetocaloric effect is caused by
the interaction of the external magnetic field with magnetic
moments in the material. In most cases, the magnetic moments
originate from the presence of unfilled electron shells in transition
metal or rare earth ions in the refrigerant, which imparts a total
electronic angular momentum ] on each ion. The magnetic
moments thus have 2] + 1 possible orientations, and - assuming
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that the thermal energy kpT is greater than the splitting between
the energy levels of these states - all will be equally occupied
and will contribute

Sm=R-In@2J +1) 2)

to the magnetic entropy, where R is constant
(8.314) mol ' K1)

If an external magnetic field is applied, the magnetic moments
will tend to align with the field, increasing the energy difference
between the states, reducing the occupation of higher energy
states (those align counter to the field), and thus reducing mag-
netic entropy. Using statistical mechanics, the field dependence
of the magnetic entropy can be derived from the partition function.
Assuming that the magnetic moments are completely independent
and do not interact with each other, one obtains

Sm _ x - (coth(x) — (2] +1) - coth(x - (2] + 1)))

R
sinh(x- (2] + 1))
+1n ( sinh(x) )’

the gas

(3)

where x depends on the temperature T, the magnetic field density B,
and properties of the refrigerant.

For a paramagnetic material, x can be calculated with the Bohr
magneton i, (9.27 x 1072* J/T), the Boltzmann constant kg (1.38x
102 J/K) and the Landé factor g (an electronic property of the
magnetic refrigerant which will be discussed in more detail in Sec-
tion 2.1).

_ MggB
T 2kgT (4)

Egs. 3 and 4 show that the magnetic entropy of a material depends
on the ratio B/T. As B approaches 0, Eq. 3 will approach Eq. 2, inde-
pendent of temperature. In real materials, interaction between ions
will always induce some splitting of the energy levels, causing the
entropy to approach zero at low temperature. Although these inter-
actions are complex, a rough approximation, useful in ADR design,
is to replace B with an effective field B in the equations above
[13]:

Beir = \/B* + %, (5)

where b is a material-dependent parameter.

At low enough temperature, most paramagnetic materials
undergo a phase change to an ordered state, usually ferromagnetic
or antiferromagnetic (see Section 2.2). Entropy drops sharply
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Fig. 1. Entropy vs. temperature curves of Ferric Ammonium Alum (FAA) for
different values of the external field density B. The entropy is normalized to the gas
constant R.

below the critical temperature. Fig. 1 shows the dependence of
the entropy S on the magnetic field density B and temperature T
for Ferric Ammonium Alum (a common paramagnetic refrigerant).
The phase change can be clearly seen by the sharp change in slope
at 26 mK.

1.2. Thermodynamics of the magnetocaloric effect

The magnetocaloric effect can also be described using formal-
isms from classical thermodynamics. The total differential of the
entropy S(T, B) of an isobaric system is

as as
ds = <ﬁ>3 -dT + <%>T -dB. (6)

In an adiabatic system, dS = 0. Using the definition of the specific
heat Cp at constant magnetic field,

Cg=T- (2—?)57 (7)

and Maxwell’s relation for the magnetization M,

(), = (), ®

one obtains the following relation for the adiabatic temperature
change dT/dB, which is often used to characterize the magnitude
of the magnetocaloric effect:

dr T (oM
5t (),

Eq. 9 shows that the magnetocaloric effect is large if the tempera-
ture T is high, if the specific heat C of the refrigerant is small, and
if the magnetization changes rapidly with temperature; the latter
condition is fulfilled around magnetic phase transitions in the
refrigerant.

Knowledge of entropy as a function of temperature and mag-
netic field is essential for the design of magnetic coolers, and the
above relations are useful in determining entropy from measure-
ments of refrigerant properties. Measurements of either the spe-
cific heat C(T,B) or the magnetization M(T,B) allow the
calculation of ASg. It is not possible to measure the three constitu-
ents of the entropy (magnetic, lattice and electronic) separately;
only the total entropy change AS; is accessible by experiment.

If the specific heat C(T, B) is measured on a sample of a magnet-
ocaloric material, the entropy can be derived with the following
equation:

S(T,B) = /OT (C(TT/;B)LdTC (10)

In some cases, it is difficult to measure the specific heat to temper-
atures low enough such that C(T', B) can be easily extrapolated to
T = 0. Then, the entropy from Eq. 10 is best separated into two
parts,

S(T,B) :/OTO (C(TT/,’B)>BdT’+/T: <C(TT/,’B)>BdT’, (11)

where T, is the lowest temperature achieved in the specific heat
measurements. Usually, the specific heat data at high magnetic
fields can be extrapolated to T = 0, because the specific heat peak
due to phase transitions is suppressed in high fields. For many
materials, the specific heat can be extrapolated with a T> depen-
dence for the lattice entropy and a linear dependence on T for the
electronic specific heat.

If the magnetization is measured, the change in magnetic
entropy induced by field B, AS(T,B) = S(T,B) — S(T,0), can be cal-
culated by integrating the Maxwell relation (Eq. 8), which gives
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