S.S. VIER

Contents lists available at ScienceDirect

Cryogenics

journal homepage: www.elsevier.com/locate/cryogenics

Overview of Nb₃Sn and V₃Ga conductor development in Japan

K. Tachikawa *

Faculty of Engineering, Tokai University, 1117 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan

ARTICLE INFO

Keywords: Nb₃Sn V₃Ga Fabrication process High-field performance Microstructure

ABSTRACT

In the early stage of high-field A15 conductor development in Japan, different type of V_3Ga conductors were fabricated. Then, Ti-doped Nb₃Sn conductors have been developed, and widely used for high-field generation. Increase of Sn concentration in the bronze produces an appreciable progress in the performance of bronze processed (Nb,Ti)₃Sn conductors. New internal Sn processed (Nb,Ti)₃Sn conductors with modified cross-sectional configurations have been produced, which exhibit large J_c in high fields as well as reduced AC loss. Both bronze processed and internal Sn processed (Nb,Ti)₃Sn conductors satisfy recent ITER magnet specifications. As for new type Nb₃Sn conductors, powder core and Jelly Roll processed (Nb,Ta)₃Sn wires with improved high-field performance have been fabricated.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

A15 crystal-type compound wires, e.g. Nb₃Sn, Nb₃Al and V₃Ga, are indispensable for generating fields over 10 T at 4.2 K. The generation of higher magnetic field is required in NMR facilities, fusion devices, refrigerator-cooled superconducting magnets, etc. Japan has been quite active in the research and development of A15 compound superconductors. A unique achievement in this area is the discovery of the effect of Cu for the promotion of V₃Ga synthesis, which has become the starting point of the commercialization of A15 superconductors [1]. The first multifilamentary A15 wire was fabricated using a composite of V cores and a Cu-Ga alloy matrix. As for Nb₃Sn, the internal Sn(IT) process was initiated in Japan [2]. Subsequently, the effect of a small amount of Ti addition to the bronze matrix of Nb₃Sn strands, which enhances the upper critical field B_{c2} (4.2 K) from 20 T to 25 T, was discovered [3]. Ti-doped bronze processed and IT processed Nb₃Sn wires have been widely used for the generation of high magnetic fields. Recently, new fabrication processes for high-field Nb₃Sn wires are also being developed. Present article provides the overview and the present status of Nb₃Sn and V₃Ga conductor development in Japan.

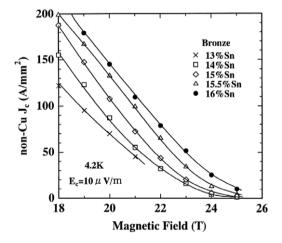
2. V₃Ga conductors

In the diffusion reaction between V and molten Ga at temperatures below $800\,^{\circ}$ C, two compounds richer in gallium than V₃Ga are predominantly formed. Only a very small amount of V₃Ga is formed between the Ga-rich compound and V through the grain

boundary diffusion. The addition of a small amount of Cu which is soluble to the Ga-rich compound enables the formation of a thick V_3 Ga layer at temperatures below 700 °C, changing the diffusion mode from a grain boundary one to a bulk one [1]. The Cu does not dissolve into the V_3 Ga, and hence does not deteriorate the intrinsic superconducting properties of the V_3 Ga. The V_3 Ga tape fabricated by this procedure was used for the construction of a 17.5 T superconducting magnet which established the highest field record at that time [4]. As a fundamental study, the microstructure of the V_3 Ga tape was investigated by a transmission electron microscope. This pioneer work clearly indicated that the major flux pinning centers in A15 phase were grain boundaries [5].

The multifilamentary V₃Ga wires stable under time varying fields were commercially fabricated from a composite of Cu-Ga alloy matrix containing 15-20 at. "Ga and V cores [6]. The composite was fabricated into a thin wire, and then heat treated at a temperature between 600-650 °C. In the heat treatment, Ga in the Cu-Ga alloy matrix selectively diffused into V, and only V₃Ga layers were formed around the V cores. Subsequently a systematic study on the in situ processed V₃Ga wire was performed [7]. Cu–V binary alloys with different composition where fabricated into thin wires and continuously coated with Ga, and finally heat treated at ${\sim}500\,^{\circ}\text{C}$ to form V₃Ga filaments. The in situ V₃Ga wire shows large critical current density (J_c) in the field range of 15–18 T, the non-Cu J_c at 17 T and 4.2 K being ~1000 A/mm² which is a several times larger than that of the bronze processed V₃Ga wire. No apparent research has been performed on V₃Ga after that, however, recently it is reconsidered for fusion application due to its much shorter decay time of induced radioactivity than Nb-based A15 compounds [8]. The fabrication of V₃Ga wires through a new powder-in-tube (PIT) process using high Ga content Cu-Ga compound powders has been initiated [9].

^{*} Tel.: +81 463 58 1211; fax: +81 463 50 2096. E-mail address: tacsuper@keyaki.cc.u-tokai.ac.jp


3. Nb₃Sn conductors

3.1. Bronze processed conductors

The Cu addition to Sn is effective for the promotion of Nb₃Sn layer synthesis as in the case of V₃Ga. Then multifilamentary Nb₃Sn wires were fabricated from the composite of Nb and Cu–Sn bronze matrix. The addition of a small amount of Ti to the bronze matrix was found to enhance significantly both the $B_{\rm c2}$ and the formation rate of Nb₃Sn layer [3]. This procedure does not introduce complexity or additional cost in the conductor fabrication. Table 1 indicates the relation between amount of Ti addition to the bronze and the amount of Ti in the Nb₃Sn layer and other properties of the Nb₃Sn [10]. Ti added to the bronze is quite easily incorporated into the Nb₃Sn layer. Critical temperature $T_{\rm c}$ shows a small peak at

Table 1 Ti concentration in Nb₃Sn, B_{c2} (4.2 K), and ρ_n value for quoted Nb/Cu–Sn–Ti composite wires reacted at 750 °C for 100 h

Wire (at.%)	$T_{\rm c}({\rm K})$	Ti content in Nb ₃ Sn (at.%)	Bc2 (4.2 K) (T)	$\rho_n(\mu\Omega m)$
Nb/Cu-7Sn	17.2	0	19.5	0.08
Nb/Cu-7Sn-0.2Ti	17.7	1.05	25.1	0.21
Nb/Cu-7Sn- 0.35Ti	17.5	1.6	26.4	0.33
Nb/Cu-7Sn-0.5Ti	16.2	2.71	26.1	0.41
Nb/Cu-7Sn-1.0Ti	15.6	3.65	24.8	0.55
Nb/Cu-7Sn-1.5Ti	15.2	3.92	24.2	0.58

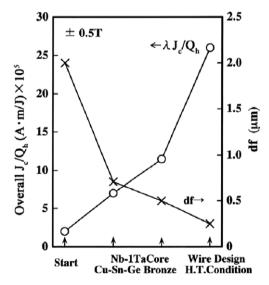
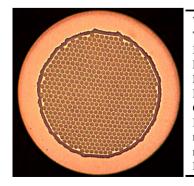


Fig. 1. Non-Cu J_c versus magnetic field curves of bronze processed (Nb,Ti) $_3$ Sn wires with quoted amount of Sn in the bronze. Ti concentration in the bronze is 0.3 wt% [11].


0.2 at.%Ti addition, and then decreases. $B_{\rm c2}$ increases rapidly up to 0.35 at.%Ti addition and then gradually decreases. Normal state resistivity ρ_n value also increases sensitively with increasing amount of Ti in the Nb₃Sn layer. $B_{\rm c2}$ may be enhanced by the increase of ρ_n , and then decreases by the reduction in $T_{\rm c}$.

Recently performance of $(Nb,Ti)_3Sn$ strands has been appreciably improved by the increase of Sn concentration in the bronze as indicated in Fig. 1 [11]. The Sn concentration in the bronze was increased from 13 wt% to 16 wt% over the past decade, the solubility of Sn in bronze being 15.8 wt%. Fig. 2 illustrates an example of the cross-section and the specification of recent Ti-bronze multifilamentary Nb₃Sn conductor [12]. The bronze contains 15.5 wt%Sn and 0.3 wt%Ti. The diameter and the number of Nb-1 wt%Ta filaments are 3.0 μ m and 11,077, respectively. Both the J_c and the hysteresis loss Q_h of the conductor satisfy the new ITER conductor specification.

 Nb_3Sn wires for AC use were also developed through the bronze process. The simultaneous addition of a small amount of Ta to Nb filaments and Ge to the matrix is effective in reducing the hysteresis loss in the bronze processed Nb_3Sn wires. Fig. 3 shows the reduction in the diameter of Nb_3Sn filaments and the enhancement of AC performance in the bronze processed Nb_3Sn wire. The Q_h of the wire is reduced to ~ 1 kJ/m³ at ± 2 T. A 50 mm bore 2 T magnet wound by the Nb_3Sn wire via the react and wind process has been successfully operated at 53 Hz and 4.2 K [13]. The mechanical tol-

Fig. 3. Reduction in filament diameter d_f and enhancement in overall J_c /hysteresis loss Q_h value of bronze processed Nb₃Sn wire for AC use.

Wire diam. (with Cr plating) 0.826 mm Twist pitch 15.0 mm Bronze composition (wt%) Cu-15.5 Sn-0.3Ti Filament composition (wt%) Nb-1.0 Ta Filament diameter 3.0 um No. Filament 19×583=11,077 Cu/non Cu ratio 1.0 Barrier material Nb non Cu J_c @ 12 T, 4.2 K 820 A/mm² n-value @ 12 T, 4.2 K 30.0 Hysteresis loss @ \pm 3 T, 4.2 620kJ/m³

Fig. 2. Cross-section and specification of the bronze processed (Nb,Ti)₃Sn conductor [12].

Download English Version:

https://daneshyari.com/en/article/1508209

Download Persian Version:

https://daneshyari.com/article/1508209

Daneshyari.com