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Abstract

Interstrand conductance is a key parameter to understand the current distribution and stability events in multi-strand superconduc-
ting cables. In this paper, a new approach employing the parameter estimation method from system identification theory is applied to
estimate the interstrand conductance from existing current distribution model based on experimental data of voltage differences at cable
ends. Based on transient voltage measurements at cable ends this method estimates interstrand conductance conveniently and accurately
under different conditions (temperature, cable length, cable compaction, etc.). The details of interstrand conductance between all com-
binations of sub-cables at different cabling stages were obtained. The influence of mechanical load on interstrand conductance was also
studied. The experimental data sheds new light on how the mechanics of cable compaction and movement under simulated Lorentz load
affects the electrical parameters, namely the interstrand conductance. The data are useful input for cable stability simulations and AC
loss estimation, and the experimental method can be used to better characterize cables prior to magnet winding.
� 2007 Published by Elsevier Ltd.
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1. Introduction

Multi-strand superconducting cables are widely used in
large-scale magnets to achieve high current carrying
capacity. Stability of the superconducting cable is impor-
tant for continuous and reliable operation. Interstrand
conductance is a key parameter to understand the current
re-distribution during stability events in multi-strand
superconducting cables. Detailed and accurate evaluation
of interstrand conductance is also useful for AC loss esti-
mations [1].

The interstrand conductance is determined by the inter-
nal resistance of the strand and the surface contact condi-
tion, the latter being the dominating factor [2]. Until now

the interstrand conductance in cables has been extensively
measured by the four-point method [3,4]. However, only
a limited number of strand/sub-cables pairs can be mea-
sured simultaneously in a single set-up. It takes a lot of
experimental work to obtain the full database of the inter-
strand conductance between all combinations of strand/
sub-cable pairs. The four-point method is restrained to
steady state electrical conditions.

In our study, we propose an innovative approach to
evaluate the interstrand conductance using parametric esti-
mation method from system identification theory [5]. In
this paper, this method is refined by developing a sequen-
tial least squares estimation method that utilizes extra fresh
experimental data to improve accuracy [6]. Based on tran-
sient current and voltage measurements at cable ends on a
6 · 5 · 6 NbTi superconducting cable, this method evalu-
ated interstrand conductance conveniently and accurately
under different conditions (temperature, cable length, cable
compaction, etc.). The details of interstrand conductance
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between all combinations of strand/sub-cables were
obtained. The influence of mechanical load on interstrand
conductance was also studied.

2. Models

The current distribution in multi-strand superconduc-
ting cables can be well described by the distributed param-
eters circuit model developed by Bottura et al. [7,8] as
shown in Fig. 1, which is the elemental length dx in a super-
conducting cable made by N strands.

Assuming that each strand carries a current uniformly
distributed in its cross section, and the current transfer
between different strands happens along the length of the
cable in a continuous manner, the following equations
can be obtained from Kirchhoff’s current and voltage laws:

Voltage law :
ov

ox
¼ ri� l

oi

ot
þ vext ð1Þ

Current law :
oi

ox
¼ gv ð2Þ

In Eqs. (1) and (2), the vectors i and v contain the N-strand
currents and voltages, respectively. l, r, and g are the sys-
tem inductance, resistance, and conductance matrices of
dimension N · N. The vectors and matrices are defined as:
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Also, the total operating current iop in the cable cross
section is conserved at any point in time and space:

XN

h¼1

ih ¼ iop ð4Þ

Assuming that the interstrand conductance is uniform
along the cable axis, the spatial derivative of the interstrand
conductance matrix g is nil. Taking the spatial derivative of
Eq. (2), a single system of partial differential equations for
the currents in the strands is obtained:

gl
oi

ot
þ o2i

ox2
þ gri� gvext ¼ 0 ð5Þ

In the above equation, the longitudinal resistance r is
known from the properties of the superconducting/copper
matrix material. The inductance l can be found analytically
from the cable geometry (e.g., cable length, sub-cable
radius and distance between the sub-cables) [9]. Using the
initial approximate value of interstrand conductance
obtained from four-point method measurement, we can
have the numerical solution of i(x, I).

Eq. (2) can be rearranged as

Dv ¼ oi

ox
ð�g�1ÞT ð6Þ

in which the Nth strand is removed and taken as voltage
reference, Dv is the voltage differences with respect to the
Nth strand, which can be measured by experiments. oi/ox

can be obtained numerically by solving the system Eq.
(5). ğ is unknown (N � 1) · (N � 1) conductance matrix
obtained by removing the Nth row and Nth column of g

defined in Eq. (3). Since the interstrand conductance is
non-zero, the matrix ğ is nonsingular and has its unique
inverse.

In Eq. (6), consider the spatial derivative of current
oi/ox as input, and the voltage differences (Dv) as output.
If at the cable terminal (x = L), we can measure the output
(Dv) from experiments and the input oi/ox from simulation,
then we can estimate the parameter g (interstrand conduc-
tance) in the expression by using least squares method to
minimize the ‘‘error’’ between the observed and calculated
voltage differences.

Suppose we have m sets of measurements. Eq. (6) can be
arranged in the following form:
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Fig. 1. Distributed parameters circuit model of multi-strand supercon-
ducting cables. v and i are voltage and current, respectively. vext is external
excited voltage per unit length of cable, r is longitudinal resistance per unit
length of cable, l is self and mutual inductance per unit length of cable, and
g is interstrand conductance per unit length of cable. In this case N = 6.
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