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Abstract

We present a revised version of a polynomial system modelling current distribution in a superconducting power cable. We show that
by using the eigenvalue theorem in Algebraic Geometry, a numerical method can be developed to design a superconducting cable sat-
isfying a predetermined current distribution.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

There is a widespread belief that superconductivity is
going to be a vital 21st century technology, not just in
the power applications field but also in electronics. It is
reflected on the extensive literature reporting on modelling,
simulation and testing of superconducting devices. In
particular, for electric power applications see the review
in [7].

The interest in applying superconductivity to electric
power and energy storage applications, is directly related
to expectations for improved performance and efficiency
advantages over conventional devices. In the case of
superconducting cables, attractive is the larger amount of
current and energy that can be transferred using supercon-
ductors compared to copper cables, and the energy savings
that can be obtained with the superconductor. The super-
conducting cable is the object of study in this work.

Let us describe the device. A high temperature supercon-
ductor (HTS) power transmission cable is usually made of
several layers of helically wound superconductor tapes. The
current distribution among the conductor tapes is con-
trolled mainly by pitches and winding directions of the lay-

ers, because the inductance of the layer is determined by
the pitch and the winding direction.

As quoted in [9], One of the most serious problems of this

multi-layer alignment is non-uniform current distribution

among the layers. If the layers do not share the current

evenly, current capacity of the whole cable is much less than
expected by critical currents of the conductors and the num-

ber of conductors. Thus, the point of research, is to find effi-
cient configurations, pitches and winding directions of the
layers in order to satisfy the homogenous current condi-
tion. A relevant step in that direction is to propose and
analyze mathematical models associated to the problem.

In [6], a generalized equation of the current distribution
under the external field is introduced, and consequently the
current distribution equation under a self-field only is
derived. Therein all physical aspects are fully explained,
we shall focus on the mathematical and numerical aspects
of the model.

For a cable of m layers the following system is obtained:
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The parameters are:

• Ii: current in layer i.
• ri: radius of layer i.
• ei: winding direction in layer i. ei = � 1, +1 depending

on the twist direction in the layer, Z or S.
• Li: twist pitch in layer i.

A cable configuration is a set of values for ei, Li. If a con-
figuration and the radii are given, we can determine the
current distribution in the cable combining the total cur-
rent condition as follows:

Xm

i¼1

I i ¼ IT: ð2Þ

For a desired total transport current IT, we have a linear
system for currents Ii. To obtain physical solutions, para-
meters are to be chosen appropriately.

The problem of homogeneous current distribution can
be formulated as follows: Assume that a cable of m

layers is to be built with known radii ri, i = 1,2, . . . ,m.
Find configurations satisfying (1) with Ii = IT/m, i =
1,2, . . . ,m.

Hence the interest is to solve the system
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for ei, Li, i = 1,2, . . . ,m.
We see that system (3) is quadratic on the variables ei/Li.

Also, it is known that in actual cables the number of layers
is small, four or six are the most common. Thus, symbolic
algorithms for solving polynomial systems are suitable for
solutions. Some of these algorithms are based on tech-
niques from Algebraic Geometry. In this work, we use
the eigenvalue theorem in this theory to develop a hybrid
algorithm, symbolic-numeric, to design a superconducting
cable satisfying a predetermined current distribution. The
algorithm rests on the theory of Gröbner bases. The con-
tent is as follows.

In Section 2 we present a slight modification of system
(3) for modeling current distribution. A general algorithm
for solving polynomial systems is sketched in Section 3.
Also, the algorithm to solve the system of current distribu-
tion is presented. In Section 4 we provide some numerical
examples of the applicability of the algorithm. More
importantly, we report on actual cables whose current dis-
tributions correspond to the ones predicted by the algo-
rithm. In Section 5 we comment on our work and future
research.

2. Current distribution in superconducting cables

Instead of uniform current distribution we consider a
more general situation. In normalized form, Eq. (2) reads
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In actual situations perfect efficiency is seldomly
attained. Thus we introduce the efficiency equation
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where 0 < E 6 1. Here Ei denotes the efficiency in layer i,
0 < Ei 6 1/m.

System (3) becomes
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Observe that in (6) the winding direction ei, and twist pitch
Li appear in the form ei/Li. Letting li = ei/Li we obtain a
quadratic system of m � 1 equations with the m unknowns
l1, l2, . . . , lm. Namely
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In the sections that follow, we shall present an algorithm
to solve this system.

Remarks

(i) There are classical numerical techniques available to
solve this polynomial system, but as quoted in [11],
there are no good, general solvers for solving systems
of multivariate polynomial equations. For systems of
moderate size, symbolic algorithms ought to be con-
sidered. These algorithms reduce the problem to com-
pute roots of a univariate problem, or to solve
eigenvalue problems.

(ii) There is a great deal of experimental work on HTS
cables. In [2] a report is presented on cables of 4, 8,
and 10 layers which were built and tested. In [10],
experiments were carried out in cables of 2, 4 and
10 layers also. In both cases current distribution is
not uniform. The condition of (almost) homogeneous
distribution is satisfied in cables reported in [12] (four
layers) and [8] (six layers).
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