

Available online at www.sciencedirect.com

Cryogenics

Cryogenics 46 (2006) 840-845

www.elsevier.com/locate/cryogenics

Application of Peng–Rabinson equation of state for CO₂ freezing prediction of hydrocarbon mixtures at cryogenic conditions of gas plants

B. ZareNezhad ^{a,*}, T. Eggeman ^b

^a Department of Chemical Engineering, Shiraz University of Technology, Modarres Street 71555-313, Shiraz, Iran ^b River City Engineering, 1202 E. 23rd Street, Lawrence, KS 66046, USA

Received 11 February 2006; received in revised form 3 July 2006; accepted 26 July 2006

Abstract

Carbon dioxide freezing problem is studied at cryogenic condition of NGL production gas plants. The Peng–Rabinson equation of state is used for predicting the CO_2 freezing points of hydrocarbon liquid and vapor mixtures. A quadratic temperature dependent correlation is presented for the proper description of a binary interaction parameter of methane and carbon dioxide at low temperatures. The overall average absolute relative deviation between the experimental and predicted CO_2 freezing temperatures for this binary system is 0.26%. The proposed model is then used for equilibrium calculations of a gas plant demethanizer column, and the CO_2 freezing points of the vapor and liquid hydrocarbon mixtures at the cold top trays of the demethanizer are predicted. © 2006 Elsevier Ltd. All rights reserved.

Keywords: Freezing; Peng-Rabinson; Interaction parameter; NGL; Cryogenic; Demethanizer

1. Introduction

Cryogenic processes are used in natural gas plants, petroleum refineries, ethylene plants and elsewhere in the process industries to recover and purify products that would normally be gaseous at ambient temperature and pressure. Carbon dioxide can freeze at the low temperature encountered in cryogenic plants, leading to plugged equipment and other operating problems. Accurate and reliable predictions of CO_2 freeze points are needed for the design of cryogenic to ensure that freeze conditions are avoided. CO_2 freeze-out prevention may dictate the type of cryogenic recovery process utilized, the maximum achievable recovery of products, or the amount of CO_2 recovered from the feed gas.

A typical process flow diagram for a turboexpansionbased NGL production plant is shown in Fig. 1. Carbon

* Corresponding author. *E-mail address:* zarenezhad@yahoo.com (B. ZareNezhad). dioxide and its potential for freezing can be a limiting factor in gas plant design and operation. Feed CO_2 levels can dramatically affect project economics and risk as it may dictate the type of recovery process utilized, the maximum achievable NGL recovery, and/or the amount of amine treating required. The revamp of an existing NGL plant to recover additional ethane needs an accurate method for CO_2 freezing prediction.

A semi-empirical liquid freezup correlation based on the Mraw et al. [7] data has been suggested for CH_4 – CO_2 binary system. Bergman and Yarborough [1] have performed a series of CO_2 freeze out experiments on light hydrocarbon systems. This work resulted in correlations similar to the one given by White et al. [12]. The liquid freezup curves from these two correlations are essentially identical except at the high temperature end (200 K). The experience has shown that these empirical correlations are not trustable enough to be used for industrial applications.

In the present paper, the standard form of Peng-Rabinson equation of state [8] with a modified interaction

^{0011-2275/\$ -} see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.cryogenics.2006.07.010

Nomenclature

A	AD average absolute deviation percent $= \sum_{i=1}^{n}$	P _{ci} critical pressure [kPa]
	$ (T_{\text{calc.}} - T_{\text{exp.}})/T_{\text{exp.}} /n \times 100$	v molar volume of the mixture [m ³ mol ⁻¹]
a_i	pure component parameter used in equation of	$v_{\text{CO}_2\text{Solid}}$ molar volume of solid CO_2 and T the tempera-
	state	ture $[m^3 mol^{-1}]$
$a_{\rm m}$	equation of state parameter used in Eq. (3)	x_{CO_2} mole fraction of CO ₂ in liquid phase
$b_{\rm m}$	equation of state parameter used in Eq. (4)	y_{CO_2} mole fraction of CO ₂ in vapor phase
b_i	pure component parameter used in equation of	z_i mole fraction of component <i>i</i> in the mixture
	state	z compressibility factor
f	empirical constant in Eq. (9)	
i,j	components i and j	Greek letters
k_{ij}	binary interaction coefficient	α and β parameters in Eq. (12)
k_{ii}^{δ}	temperature independent binary interaction	$\Delta f_{CO_2}^{V-S}$ difference between fugacity of CO ₂ in vapor and
.,	coefficient	solid phases
k	Boltzmann constant	$\Delta f_{\rm CO_2}^{\rm L-S}$ difference between fugacity of CO ₂ in liquid and
Р	system pressure [kPa]	solid phases
P_{C}^{S}	at CO ₂ Solid saturated vapor pressure of solid CO ₂ at sys-	$\phi_{CO_2}^V$ vapor phase partial fugacity coefficient for CO ₂
	tem temperature [kPa]	ϕ_{CO}^{Sat} fugacity coefficient of pure CO ₂ at system tem-
R	universal gas constant (=8.314) $[J \text{ mol}^{-1} \text{ K}^{-1}]$	perature
R^2	regression coefficient	ϕ_i fugacity coefficient of component <i>i</i> in the mix-
T^{1}	CO_2 triple point temperature [K]	ture
$T_{\rm e}$	experimental freezing point [K]	$\phi_{CO_2}^{L}$ liquid phase fugacity coefficient for CO ₂
$T_{\rm c}$	calculated freezing point [K]	ε_{ij} interaction energy
Τ	system temperature [K]	ε_{ii}^{0} temperature independent interaction energy
$T_{\rm c}$	i critical temperature [K]	n_{ii} parameter of non-central energy
m_i	parameter defined in Eq. (4)	$\epsilon(k_{ii})$ error function = $ T_{exp} - T_{calc} $
N	number of components	ω_i acentric factor for component <i>i</i>
п	number of data points	, · · · · · · · · · · · · · · · · · · ·

parameter is used for the prediction of CO_2 freezing conditions. First a simple but very important case of freezing

point prediction for the CH_4 - CO_2 binary system is investigated. The predicted CO_2 freezing points for the vapor

Fig. 1. Process flow diagram for a turboexpansion-based NGL production plant.

Download English Version:

https://daneshyari.com/en/article/1508499

Download Persian Version:

https://daneshyari.com/article/1508499

Daneshyari.com