

Available online at www.sciencedirect.com

ScienceDirect

Procedia Procedia

Energy Procedia 88 (2016) 382 - 388

CUE2015-Applied Energy Symposium and Summit 2015: Low carbon cities and urban energy systems

Dynamic Frequency Regulation Method Based On Thermostatically Controlled Appliances in the Power System

Xinyang Rui^a, Xingwei Liu^b, Jian Meng^c

^aThe University of Kansas, Lawrence, Kansas 66045, USA ^bChina Electric Power Research Institute, Beijing 100192, China ^cState Power Economic Research Institute, Beijing 102209, China

Abstract

This paper presents a dynamic frequency regulation strategy which uses residential thermostatically controlled appliances (TCA) to alleviate frequency deviations caused by high penetration of renewable energy sources in the power system. Heating, ventilating and air-conditioning (HVAC) load is used as an example of TCA load. With the control strategy, HVAC units respectively collect frequency information locally, based on which their on/off status is dynamically regulated. The simulation is implemented with 1000 HVAC units in a British Grid model. The results demonstrate that the strategy effectively alleviate the frequency deviations caused by renewable energy sources. A frequency response ability assessment method based on a dynamic load-sorting strategy is also presented.

© 2016 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the organizing committee of CUE 2015

Keywords: Demand Response, Thermostatically controlled appliances, Dynamic frequency regulation, Frequency response ability assessment

1. Introduction

Expanding implementation of renewable energy in the power system is promising in alleviating the environmental problems caused by extensive usage of fossil fuels. However, frequency instability caused by the intermission and uncertainty of renewable energy sources, such as wind and solar power is a major operation issue for their high penetration into the power grid.

Demand Response is considered as a valuable method to balance the system power and thus restrain frequency instability in future grids. The development of smart grid with advanced communication and control tools will enable DR programs to provide ancillary services to power systems such as frequency regulation. Thermostatically controlled appliances (TCA) can provide large load balancing capacity and are controllable for the ability to change on/off status instantly. Thus, under proper control strategies, TCAs can be a major DR resource for frequency control.

Nomenclature

Abbreviation

DR Demand Response

TCA Thermostatically Controlled Appliance

HVAC Heating, Ventilating, and Air-conditioning

Symbols

f Frequency

 $T_{\rm set}$ Thermostat set-point

 T_{+} Temperature upper limit

T. Temperature lower limit

 $\triangle T$ Deficit between T_{set} and $T_{+}(T_{-})$

 Δf Frequency deviation

k User comfort parameter

P Power consumption of a HVAC unit

P_c Controllable power

 P_{c_max} Upper limit of P_c

n Total number of HVAC units

 m_t Number of controllable units at moment t

 S_j On/off status of unit j

2. HVAC Control strategy

2.1. Thermal behavior of HVAC units

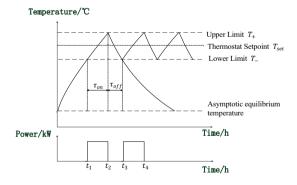


Fig. 1 Thermal behavior of an HVAC unit in winter

Download English Version:

https://daneshyari.com/en/article/1508834

Download Persian Version:

https://daneshyari.com/article/1508834

<u>Daneshyari.com</u>