

Available online at www.sciencedirect.com

ScienceDirect

Procedia Procedia

Energy Procedia 73 (2015) 103 - 111

9th International Renewable Energy Storage Conference, IRES 2015

Hybrid energy storage systems for renewable energy applications

Thilo Bocklisch*

Chemnitz University of Technology, Department of Power Systems and High-Voltage Engineering Reichenhainer Str. 70, 09126 Chemnitz

Abstract

The paper gives an overview of the innovative field of hybrid energy storage systems (HESS). An HESS is characterized by a beneficial coupling of two or more energy storage technologies with supplementary operating characteristics (such as energy and power density, self-discharge rate, efficiency, life-time, etc.). The paper briefly discusses typical HESS-applications, energy storage coupling architectures, basic energy management concepts and a principle approach for the power flow decomposition based on peak shaving and double low-pass filtering. Four HESS-configurations, suitable for the application in decentralized PV-systems: a) power-to-heat/battery, b) power-to-heat/battery/hydrogen, c) supercap/battery and d) battery/battery, are briefly discussed. The paper ends with a short description of the HESS-experimental test-bed at Chemnitz University of Technology.

© 2015 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of EUROSOLAR - The European Association for Renewable Energy

Keywords: hybrid energy storage; battery; supercap, hydrogen; control; energy management; photvoltaics; power-to-heat

1. Introduction

The global problems of a rapidly rising CO₂-concentration in the atmosphere, the green-house effect and the related severe changes in world surface temperature and world climate have to be addressed and solved quickly. One important part of the solution will be a fast transition from the antiquated fossil-based energy system to a sustainable, 100%-renewable energy system. Therefore, a further and fast dissemination of PV and wind power is required. PV and wind power fluctuations on an hourly, daily and annual time scale (and with a regional distribution) can be handled, employing a variety of flexibility technologies, such as demand side management, grid extension or energy storage [1]. A number of storage technologies based on electrical, mechanical, chemical and thermal energy storage

^{*} Corresponding author. Tel.: +49 371 531 32133; fax: +49 371 531 832133. E-mail address:thilo.bocklisch@etit.tu-chemnitz.de

principles are available with quite different technical parameters and operating characteristics (s.Tab.1, [1], [2], [3]). Current system analysis studies indicate energy storage demand on a short-, mid- and long-term time scale [4], [5]. At this point, the utilization of the hybrid energy storage system (HESS) approach, integrating storage technologies with supplementary operating characteristics, can be very beneficial. Section 2 discusses typical HESS-applications, energy storage coupling architectures and basic energy management concepts. Section 3 introduces a principle power flow decomposition approach based on peak shaving and double low-pass filtering. Four HESS-configurations, suitable for the application in decentralized PV-systems: a) power-to-heat/battery, b) power-to-heat/battery/hydrogen, c) supercap/battery and d) battery/battery, are briefly discussed. The paper ends with a short description of the HESS-experimental test-bed at Chemnitz University of Technology.

	supercap	SMES	flywheel	lead- acid	lithium- ion	NaS	redox-flow	hydrogen	pumped hydro	CAES
energy density in Wh/l	2-10	0,5-10	80-200	50-100	200-350	150- 250	20-70	750/250bar 2400/liquid	0,27-1,5	3-6
installation costs in €/kW	150-200	high	300	150- 200	150-200	150- 200	1000- 1500	1500- 2000	500- 1000	700- 1000
installation costs in €/kWh	10000- 20000	high	1000	100- 250	300- 800	500- 700	300- 500	0,3-0,6	5-20	40-80
reaction time	<10ms	1-10ms	>10ms	3-5ms	3-5ms	3-5ms	>1s	10min	>3min	3-10min
self- discharge rate	up to 25% in first 48h	10-15 %/day	5-15 %/h	0,1-0,4 %/day	5 %/month	10 %/day	0,1-0,4 %/day	0,003-0,03 %/day	0,005- 0,02 %/day	0,5-1 %/day
cycle life- time	>1Mill.	>1Mill.	>1Mill.	500- 2000	2000- 7000	5000- 10000	>10000	>5000		
life-time in years	15	20	15	5-15	5-20	15-20	10-15	20	80	ca. 25
system efficiency in %	77-83	80-90	80-95	70-75	80-85	68-75	70-80	34-40	75-82	60-70
short-term (<1min)	xxx	XXX	xxx		Х		х			
mid-term (>1min,<2d)			Х	XXX	XXX	xx	xx	Х	XX	XX
long-term (>2d)				Х		Х	XX	xxx	xxx	XX

Table 1. Comparison of different energy storage technologies.

2. Hybrid energy storage systems

In a HESS typically one storage (ES1) is dedicated to cover "high power" demand, transients and fast load fluctuations and therefore is characterized by a fast response time, high efficiency and high cycle lifetime. The other storage (ES2) will be the "high energy" storage with a low self-discharge rate and lower energy specific installation costs (s.Tab.1 and Fig.1). Main advantages of a HESS are:

- reduction of total investment costs compared to a single storage system (due to a decoupling of energy and power, ES2 only has to cover average power demand)
- increase of total system efficiency (due to operation of ES2 at optimized, high efficiency operating points and reduction of dynamic losses of ES2)
- increase of storage and system lifetime (optimized operation and reduction of dynamic stress of ES2)

Download English Version:

https://daneshyari.com/en/article/1510005

Download Persian Version:

https://daneshyari.com/article/1510005

<u>Daneshyari.com</u>