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Abstract 

Subsurface structures have a strong influence on fluid flow and heat transport in geothermal systems. We examine whether the 

position and shape of an interface between two lithological bodies can be detected based on temperature-depth measurements. 

We use a level set function to describe the interface, and a shape optimization method in combination with the adjoint variable 

based on the heat transport equation to invert for position and shape. Specifically, we investigate how advective heat transport 

affects the identification of the interface and show that the method successfully retrieves interface positions in synthetic 2D cases 

of two-layer models. 
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1. Introduction 

     Inversion methods are widely applied to determine petrophysical properties, and increasingly also structural 

elements, of the subsurface. Oliver summarized in [1] the key developments in reservoir history matching including 

reparameterization of the model variables, computation of sensitivity coefficients, and uncertainty quantification. 
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Associated issues and techniques of modeling uncertainty of Earth systems can also be found in [2]. We present here 

a shape optimization method with level set functions and adjoint variables to infer the position of subsurface 

geophysical layers, based on temperature data measured in boreholes. We study a synthetic 2D model with two 

layers of different petrophysical properties (i.e. thermal conductivity and permeability). The goal is to identify the 

interface position and shape from temperature depth data measured in several boreholes. This task is formulated as 

an optimization problem. A least-squares function is first established subject to the heat transfer equation governing 

the temperature field and its temporal variations. Instead of directly computing the gradient of the objective 

function, we compute the adjoint variable of temperature. A level set method is then used to represent the shape of 

the geological interface. The change of the level set function describes the evolution of the model during 

optimization iterations. The level set function follows a Hamilton-Jacobi equation and the zero level set is used to 

indicate location of the interface. With the adjoint variable and temperatures predicted from forward modeling of 

conductive and advective heat transport in the model, an artificial velocity is calculated at each grid point. This 

velocity is subsequently used for a stepwise update of the level set function and, therefore, the position of the layer. 

This procedure is repeated until a specified tolerance level is obtained and the position of the geological interface is 

retrieved. In [3], Papadopoulos addressed the reconstruction of geophysical layers with the combination of the 

adjoint variable and the level set method for the case of heat conduction. We extended this work so that it can be 

used to compute adjoint variables for both conductive and advective heat transport cases. We describe the theoretical 

aspects of this extension in the next section, and then test our method in a synthetic case study in several model 

scenarios. 

2. Methods 

2.1. Forward Modeling 

    The forward problem is described by the heat transport equation for the fluid flow, which can be derived by 

considering the content of heat change of a control volume and applying Darcy’s Law and Gauss’ theorem [4]. The 

heat transport equation can be expressed as: 

 

                (1) 

 

Where is fluid density (kg ), is fluid specific heat capacity ( ), v is Darcy (filtration) velocity 

(m ), is porosity, is volumetric heat capacity of the fluid, is volumetric heat  capacity of the rock 

matrix , is effective thermal conductivity of the saturated porous medium ( ). Currently we only take 

the distribution of conductivity into consideration, assuming other parameters as constant. Also conductivity is 

assumed to be isotropic, so it is treated as a scalar.
 

2.2. Adjoint Method 

    In order to do shape optimization of the interface, the problem we are trying to solve here is to minimize the 

(quadratic) temperature residual under the constraint of the heat transport equation. To avoid directly computing the 

gradient of the objective function with respect to heat transport, we apply the adjoint method and compute the 

adjoint variable of temperature instead. Sirkes and Tziperman explained in [5] the process of continuous adjoint 

approach for deriving the adjoint equations, by considering a simple one dimensional advection-diffusion equation. 

For our case, similarly, we can first define an objective function:  
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